Question

1)A second order reaction has a rate constant of 3.7 M-1min-1. if the initial concentration of...

1)A second order reaction has a rate constant of 3.7 M-1min-1. if the initial concentration of the reactant is 0.0100M, what is the concentration remaining after 15 min?
a) .0099M
b) .0056M
c) .0025M
d) .0064M

2) the rate constant for the first order decomposition of A at 500 degrees Celsius is 9.2 x 10 to the negative 3rd powers s-1. How long will it take for 90.8 % of a 0.500M sample of A to decompose
a) 2.5 x 10 to the 4th power s
b) 25.9s
c)1.13x10 to the 2nd power s
d)2.6 x 10 to the 2nd power s

3) from a plot of In k versus 1/T you can determin
a) the rate constant
b) the order of the reaction 
c) the change in enthalpy of the reaction 
d) the activation energy
e) the equilibrium constant

4)the reaction 2A+ B ->D proceeds as follows
step 1 : A + B-> C+ I (slow)
step 2 : A+I -> D (fast)
what is the rate law for the overall reaction?
a) rate = k [A][B]
b) RATE =k [A]2[B]
c)RATE =k [A]2
d)RATE =k [A][B][C]
e) none of these

Homework Answers

Answer #1

1) d

2) d

3) d, because the slope gives the value of Ea / R and here we can get Ea.

4) a, rate=k[A][B]. Since step 1 is the rate-determining step, the rate law is

Since both A and B are reactants, this is the rate law for the reaction.

Addition of 1 and 2 gives the overall reaction, but the step 2 does not affect the rate law because is fast. Note that the rate law is not derived from the overall equation either.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The reaction A→B has been experimentally determined to be second order. The initial rate is 0.0100M/s...
The reaction A→B has been experimentally determined to be second order. The initial rate is 0.0100M/s at an initial concentration of A of 0.150 M . 1. What is the initial rate at [A]=0.850 M ? a. 0.321 M/s b. 0.113 M/s c. 5.67×10−2 M/s
1) Initial concentration of reactant A in a 2nd-order reaction aA ----> Products is 0.880 M....
1) Initial concentration of reactant A in a 2nd-order reaction aA ----> Products is 0.880 M. In 30 min, the concentration of A decreases to 40.0% of its initial value. Determine the rate constant of this reaction 2) For the reaction N2O4(g) = 2NO2(g), the equilibirum constant at definite temperature Kc = 3.5 x 10^-4. If the initial concentration of N2O4 is 0.200M, what will be the concentration of NO2 at equilibrium?
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. 1.) The reactant concentration in a zero-order reaction was 6.00×10−2M after 165 s and 3.50×10−2Mafter 385 s . What is the rate constant for this reaction? 2.)What was the initial reactant concentration for the reaction described in Part A? 3.)The reactant concentration in a first-order reaction was 6.70×10−2 M after 40.0 s and 2.50×10−3Mafter 95.0 s ....
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products) has a rate constant of 4.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A],...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products ) has a rate constant of 5.10×10−3 s−1 at 45 ∘C . How many minutes does it take for the concentration of the...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k ------------ Part A The reactant concentration in a zero-order reaction was 5.00×10−2M after 110 s and 4.00×10−2M after 375 s . What is the rate constant for this reaction? ---------- Part B...
3)The thermal decomposition of acetaldehyde is a second order reaction CH3CHO-> CH4+CO from the data shown...
3)The thermal decomposition of acetaldehyde is a second order reaction CH3CHO-> CH4+CO from the data shown below, calculate the average rate of change in the pressure of acetaldehyde between 42 and 105 s. include the correct sign and units. ( this is analogous to finding the average rate of change in concentration, just substitute pressure for concentration.) 4) for the reaction shown below which one of the following statements can you rightly assume? 2H2S (g) +O2 (g) ->2S (s)+ 2H2O...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k Part A The reactant concentration in a zero-order reaction was 8.00×10−2M after 200 s and 2.50×10−2Mafter 390 s . What is the rate constant for this reaction? Express your answer with the...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k Part A The reactant concentration in a zero-order reaction was 7.00×10−2M after 135 s and 2.50×10−2M after 315 s . What is the rate constant for this reaction? Express your answer with...
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45...
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Express your answer with the appropriate units. Answer: 6.42 min Part B A certain second-order reaction (B→products) has a rate constant of 1.35×10−3M−1⋅s−1 at 27 ∘Cand an initial half-life of 236 s . What is the concentration of the reactant B after...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT