Question

A refrigerator runs on the vapor-compression cycle. The boiler operates at T=265 K and the condenser operates at 305 K. The compressor has an efficiency of 85%.

a. What is the maximum attainable coefficient of performance for Freon 22?

b. What is the maximum attainable coefficient of performance for refrigerant R-422A?

Answer #1

The detailed steps are given below

Regarding a Vapor-Compression cycle: A refrigerant (HCFC-22)
enters the compressor of a refrigerator as a superheated vapor at
.14MPa and -20 degrees Celsius at a rate of .05 kg/s and leaves at
.8 MPa and 50 degrees Celsius. The refrigerant is cooled in the
condenser to 26 degrees Celsius and .72MPa and is then throttled
down to .15 MPa. Determine the rate of heat removal from the
refrigerated space and the power input to the compressor and the
Coefficient of...

A vapor-compression refrigeration cycle operates at steady state
with Refrigerant 134a as the working fluid. Saturated vapor enters
the compressor at 2 bar, and saturated liquid exits the condenser
at 8 bar. The isentropic compressor efficiency is 80%. The mass
flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor
power, in kW, (b) the refrigeration capacity, in tons, (1 ton =
3.5168 kW) and, (c) the coefficient of performance, (d) rate of
entropy production in kW/K, for the...

An idea vapor-compression refrigeration cycle, with refrigerant
R-22 as the working fluid, has an evaporator temperature of -12 °C
and a condenser pressure of 15 bar. Saturated vapor enters the
compressor, and saturated liquid exits the condenser. The
refrigerating capacity is 4 tons.
a.Determine the compressor power (in kW).
b.Determine the mass flow rate of the refrigerant (in
kg/min).
c.Determine the coefficient of performance.

Consider a commercial refrigerator which operates on the
refrigeration cycle. R-
134a is used as the working
uid and the refrigerated space is kept at -25oC by rejecting
its
waste heat to cooling water that enters the condenser at room
temperature, that is 20oC, at a
rate of 0.1 kg/s and leaves at 40oC. The refrigerant enters the
condenser at 1.2 MPa and 70oC
and leaves at 40oC. The inlet state of the compressor is saturated
vapor at 100 kPa...

Consider the vapor compression refrigeration cycle with
tetrafluoroethane as refrigerant. If the evaporation temperature is
261.15 K, show the effect of condensation temperature on the
coefficient of performance by making calculations for condensation
temperature of 288.75 K and 300.15 K. Assume that vapor compression
process isentropic and compressor efficiency is 80 %

An ideal vapor-compression refrigeration cycle operates at
steady state with Refrigerant 134a as the working fluid. Saturated
vapor enters the compressor at 1 bar, and saturated liquid exits
the condenser at 4 bar. The mass flow rate of refrigerant is 8.5
kg/min.
Determine the compressor power, in kW.

Refrigerant 134a is the working fluid in a vapor-compression
heat pump that provides 35 kW to heat a dwelling on a day when the
outside temperature is below freezing. Saturated vapor enters the
compressor at 2.6 bar, and saturated liquid exits the condenser,
which operates at 8 bar. Determine for an isentropic compressor
efficiency of 85%: (a) the refrigerant mass flow rate, in kg/s. (b)
the magnitude of the compressor power, in kW. (c) the coefficient
of performance.

Refrigerant 134a is the working fluid in an ideal
vapor-compression refrigeration cycle operating at steady state.
Refrigerant enters the compressor at 1 bar, -12°C, and the
condenser pressure is 9 bar. Liquid exits the condenser at 32°C.
The mass flow rate of refrigerant is 7 kg/min. Determine:
(a) the magnitude of the compressor power, in kW. (b) the
refrigeration capacity, in tons. (c) the coefficient of
performance.

Refrigerant 134a is the working fluid in a vapor-compression
heat pump system with a heating capacity of 60,000 Btu/h. The
condenser operates at 240 lbf/in.2, and the evaporator temperature
is 0°F. The refrigerant is a saturated vapor at the evaporator exit
and a liquid at 110°F at the condenser exit. Pressure drops in the
flows through the evaporator and condenser are negligible. The
compression process is adiabatic, and the temperature at the
compressor exit is 180°F. Determine (a) the mass...

An ice-making machine operates on the ideal vapor-compression
cycle, using refrigerant-134a. The refrigerant enters the
compressor as saturated vapor at 20 psia and leaves the condenser
as saturated liquid at 80 psia. Water enters the ice machine at
55°F and leaves as ice at 25°F. For an ice production rate of 15
lbm/h, determine the power input to the ice machine (169 Btu of
heat needs to be removed. Compressor's efficiency is 90 percent

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 2 minutes ago

asked 5 minutes ago

asked 5 minutes ago

asked 11 minutes ago

asked 16 minutes ago

asked 17 minutes ago

asked 27 minutes ago

asked 51 minutes ago

asked 55 minutes ago

asked 57 minutes ago

asked 1 hour ago

asked 1 hour ago