Question

Regarding a Vapor-Compression cycle: A refrigerant (HCFC-22) enters the compressor of a refrigerator as a superheated...

Regarding a Vapor-Compression cycle: A refrigerant (HCFC-22) enters the compressor of a refrigerator as a superheated vapor at .14MPa and -20 degrees Celsius at a rate of .05 kg/s and leaves at .8 MPa and 50 degrees Celsius. The refrigerant is cooled in the condenser to 26 degrees Celsius and .72MPa and is then throttled down to .15 MPa. Determine the rate of heat removal from the refrigerated space and the power input to the compressor and the Coefficient of Performance (COP) of the refrigerator.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
R-134a enters the compressor of a refrigerator as superheated vapour at 0.14 MPa, -10 °C at...
R-134a enters the compressor of a refrigerator as superheated vapour at 0.14 MPa, -10 °C at a rate of 0.12 kg/s, and it leaves at 0.7 MPa and 50 °C. The refrigerant is cooled in the condenser to 24 °C and 0.65 MPa, and it is throttled to 0.15 MPa. Disregard any heat transfer and pressure drops in the connecting lines between the components. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the...
Consider a commercial refrigerator which operates on the refrigeration cycle. R- 134a is used as the...
Consider a commercial refrigerator which operates on the refrigeration cycle. R- 134a is used as the working uid and the refrigerated space is kept at -25oC by rejecting its waste heat to cooling water that enters the condenser at room temperature, that is 20oC, at a rate of 0.1 kg/s and leaves at 40oC. The refrigerant enters the condenser at 1.2 MPa and 70oC and leaves at 40oC. The inlet state of the compressor is saturated vapor at 100 kPa...
- a vapour-compression air-conditioning cycle where the compressor has an isentropic efficiency of 75%. Refrigerant (R12)...
- a vapour-compression air-conditioning cycle where the compressor has an isentropic efficiency of 75%. Refrigerant (R12) is used as the working fluid with a mass now rate of 0.04kg/s. saturated vapour eaters the compressor at 0.5 MPa and leaves to the condenser at 1.2IMPa. The air-conditioner cools down the station to 26°C through an evaporator, and rejects heat to the 34°C ambient through a condenser. (a) Sketch and label the schematic of the air-conditioning cycle and its T-S and P-h...
An ice-making machine operates on the ideal vapor-compression cycle, using refrigerant-134a. The refrigerant enters the compressor...
An ice-making machine operates on the ideal vapor-compression cycle, using refrigerant-134a. The refrigerant enters the compressor as saturated vapor at 20 psia and leaves the condenser as saturated liquid at 80 psia. Water enters the ice machine at 55°F and leaves as ice at 25°F. For an ice production rate of 15 lbm/h, determine the power input to the ice machine (169 Btu of heat needs to be removed. Compressor's efficiency is 90 percent
An ice-making machine operates on the ideal vapor-compression cycle, using R-134a. The refrigerant enters the compressor...
An ice-making machine operates on the ideal vapor-compression cycle, using R-134a. The refrigerant enters the compressor as saturated vapor at 140 kPa and leaves the condenser as saturated liquid at 600 kPa. Water enters the ice machine at 13oC and leaves as ice at -4oC, while removing heat at 393 kJ per kg of water. Estimate the mass flow rate of the refrigerant and the power input to the ice machine for an ice production rate of 7 kg/h.
A commercial refrigerator with refrigerant R-134a as the working fluid is used to keep the refrigerated...
A commercial refrigerator with refrigerant R-134a as the working fluid is used to keep the refrigerated space at -30 C by rejecting its waste heat to cooling water that enters the condenser at 18 C at a rate of 0.25 kg/s and leaves at 26 C. The refrigerant enters the condenser at 1.2 MPa and 65 C and leaves at 42 C. The inlet state of the compressor is 60 kPa and -34 C and the compressor is estimated to...
A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space...
A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at −30°C by rejecting its waste heat to cooling water that enters the condenser at 18°C at a rate of 0.32 kg/s and leaves at 26°C. The refrigerant enters the condenser at 1.2 MPa and 65°C and leaves at 42°C. The inlet state of the compressor is 60 kPa and −34°C and the compressor is estimated to gain a net heat of 460 W...
A cooling plant adopted a two-stage cascade refrigeration system to meet the required cooling load. In...
A cooling plant adopted a two-stage cascade refrigeration system to meet the required cooling load. In both upper and lower cycles, the refrigerant leaves condenser as saturated liquid and enters compressor as saturated vapor. The isentropic efficiency of the upper cycle compressor is 80 %, while the lower cycle compressor is 70% efficient. The pressure limits of the upper and lower cycles are 1 MPa and 0.2 MPa with refrigerant-134a, respectively. Heat rejection from the lower cycle to the upper...
An idea vapor-compression refrigeration cycle, with refrigerant R-22 as the working fluid, has an evaporator temperature...
An idea vapor-compression refrigeration cycle, with refrigerant R-22 as the working fluid, has an evaporator temperature of -12 °C and a condenser pressure of 15 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The refrigerating capacity is 4 tons. a.Determine the compressor power (in kW). b.Determine the mass flow rate of the refrigerant (in kg/min). c.Determine the coefficient of performance.
Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle operating at steady state....
Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle operating at steady state. Refrigerant enters the compressor at 1 bar, -12°C, and the condenser pressure is 9 bar. Liquid exits the condenser at 32°C. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the magnitude of the compressor power, in kW. (b) the refrigeration capacity, in tons. (c) the coefficient of performance.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT