Question

Consider the vapor compression refrigeration cycle with tetrafluoroethane as refrigerant. If the evaporation temperature is 261.15 K, show the effect of condensation temperature on the coefficient of performance by making calculations for condensation temperature of 288.75 K and 300.15 K. Assume that vapor compression process isentropic and compressor efficiency is 80 %

Answer #1

Consider the vapor-compression refrigeration cycle with HFC-134a
as refrigerant. If the evaporation temperature is -8 °C, show the
effect of condensation temperature on the coefficient of
performance by making calculations for condensation temperatures of
30 °C and 25 °C. (a) Assume isentropic compression of the vapor.
(b) Assume compressor efficiency of 85%.

A vapor-compression refrigeration cycle operates at steady state
with Refrigerant 134a as the working fluid. Saturated vapor enters
the compressor at 2 bar, and saturated liquid exits the condenser
at 8 bar. The isentropic compressor efficiency is 80%. The mass
flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor
power, in kW, (b) the refrigeration capacity, in tons, (1 ton =
3.5168 kW) and, (c) the coefficient of performance, (d) rate of
entropy production in kW/K, for the...

An idea vapor-compression refrigeration cycle, with refrigerant
R-22 as the working fluid, has an evaporator temperature of -12 °C
and a condenser pressure of 15 bar. Saturated vapor enters the
compressor, and saturated liquid exits the condenser. The
refrigerating capacity is 4 tons.
a.Determine the compressor power (in kW).
b.Determine the mass flow rate of the refrigerant (in
kg/min).
c.Determine the coefficient of performance.

Consider a 280 kJ/min refrigeration system that operates on an
ideal vapor-compression refrigeration cycle with refrigerant-134a
as the working fluid. The refrigerant enters the compressor as
saturated vapor at 140 kPa and is compressed to 800 kPa. The
saturated refrigerant-134a—pressure table (in SI units) is given
below. Determine the quality of the refrigerant at the end of the
throttling process.

Refrigerant 134a is the working fluid in an ideal
vapor-compression refrigeration cycle operating at steady state.
Refrigerant enters the compressor at 1 bar, -12°C, and the
condenser pressure is 9 bar. Liquid exits the condenser at 32°C.
The mass flow rate of refrigerant is 7 kg/min. Determine:
(a) the magnitude of the compressor power, in kW. (b) the
refrigeration capacity, in tons. (c) the coefficient of
performance.

An ideal vapor-compression refrigeration cycle operates at
steady state with Refrigerant 134a as the working fluid. Saturated
vapor enters the compressor at 1 bar, and saturated liquid exits
the condenser at 4 bar. The mass flow rate of refrigerant is 8.5
kg/min.
Determine the compressor power, in kW.

Refrigerant 134a is the working fluid in a vapor-compression
heat pump system with a heating capacity of 60,000 Btu/h. The
condenser operates at 240 lbf/in.2, and the evaporator temperature
is 0°F. The refrigerant is a saturated vapor at the evaporator exit
and a liquid at 110°F at the condenser exit. Pressure drops in the
flows through the evaporator and condenser are negligible. The
compression process is adiabatic, and the temperature at the
compressor exit is 180°F. Determine (a) the mass...

- a vapour-compression air-conditioning cycle where the
compressor has an isentropic efficiency of 75%. Refrigerant (R12)
is used as the working fluid with a mass now rate of 0.04kg/s.
saturated vapour eaters the compressor at 0.5 MPa and leaves to the
condenser at 1.2IMPa. The air-conditioner cools down the station to
26°C through an evaporator, and rejects heat to the 34°C ambient
through a condenser. (a) Sketch and label the schematic of the
air-conditioning cycle and its T-S and P-h...

Refrigerant 134a is the working fluid in a vapor-compression
heat pump that provides 35 kW to heat a dwelling on a day when the
outside temperature is below freezing. Saturated vapor enters the
compressor at 2.6 bar, and saturated liquid exits the condenser,
which operates at 8 bar. Determine for an isentropic compressor
efficiency of 85%: (a) the refrigerant mass flow rate, in kg/s. (b)
the magnitude of the compressor power, in kW. (c) the coefficient
of performance.

Consider a single-stage refrigeration system operating between the pressure limits of 1.4 MPa and 160 kPa
with refrigerant R134a as the working fluid. The refrigerant is a saturated liquid at the condenser exit and a
saturated vapor at the compressor inlet. The isentropic efficiency for the compressor is 80 percent. If the
mass flow rate of the refrigerant through the cycle is 0.11 kg/s determine (a) the rate of heat removal from the
refrigerated space, and (b) the coefficient of...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 19 minutes ago

asked 43 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago

asked 3 hours ago

asked 3 hours ago