Question

A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated...

A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 2 bar, and saturated liquid exits the condenser at 8 bar. The isentropic compressor efficiency is 80%. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor power, in kW, (b) the refrigeration capacity, in tons, (1 ton = 3.5168 kW) and, (c) the coefficient of performance, (d) rate of entropy production in kW/K, for the condenser assuming heat transfer occurs to surrounding reservoir 5 oC different from the condensation temperature. (e) Show the entire cycle on a T ? s diagram. Label states, show isobars, and indicate process directions.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid....
An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 1 bar, and saturated liquid exits the condenser at 4 bar. The mass flow rate of refrigerant is 8.5 kg/min. Determine the compressor power, in kW.
Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle operating at steady state....
Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle operating at steady state. Refrigerant enters the compressor at 1 bar, -12°C, and the condenser pressure is 9 bar. Liquid exits the condenser at 32°C. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the magnitude of the compressor power, in kW. (b) the refrigeration capacity, in tons. (c) the coefficient of performance.
An idea vapor-compression refrigeration cycle, with refrigerant R-22 as the working fluid, has an evaporator temperature...
An idea vapor-compression refrigeration cycle, with refrigerant R-22 as the working fluid, has an evaporator temperature of -12 °C and a condenser pressure of 15 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The refrigerating capacity is 4 tons. a.Determine the compressor power (in kW). b.Determine the mass flow rate of the refrigerant (in kg/min). c.Determine the coefficient of performance.
Refrigerant 134a is the working fluid in a vapor-compression heat pump that provides 35 kW to...
Refrigerant 134a is the working fluid in a vapor-compression heat pump that provides 35 kW to heat a dwelling on a day when the outside temperature is below freezing. Saturated vapor enters the compressor at 2.6 bar, and saturated liquid exits the condenser, which operates at 8 bar. Determine for an isentropic compressor efficiency of 85%: (a) the refrigerant mass flow rate, in kg/s. (b) the magnitude of the compressor power, in kW. (c) the coefficient of performance.
Consider a 280 kJ/min refrigeration system that operates on an ideal vapor-compression refrigeration cycle with refrigerant-134a...
Consider a 280 kJ/min refrigeration system that operates on an ideal vapor-compression refrigeration cycle with refrigerant-134a as the working fluid. The refrigerant enters the compressor as saturated vapor at 140 kPa and is compressed to 800 kPa. The saturated refrigerant-134a—pressure table (in SI units) is given below. Determine the quality of the refrigerant at the end of the throttling process.
Consider the vapor-compression refrigeration cycle with HFC-134a as refrigerant. If the evaporation temperature is -8 °C,...
Consider the vapor-compression refrigeration cycle with HFC-134a as refrigerant. If the evaporation temperature is -8 °C, show the effect of condensation temperature on the coefficient of performance by making calculations for condensation temperatures of 30 °C and 25 °C. (a) Assume isentropic compression of the vapor. (b) Assume compressor efficiency of 85%.
An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration...
An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycle is to maintain a space at 36°C while operating its condenser at 1600 kPa. Determine the COP of the system when a temperature difference of 4°C is allowed for the transfer of heat in the evaporator. (Take the required values from saturated refrigerant-134a tables.)
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity...
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity of 60,000 Btu/h. The condenser operates at 240 lbf/in.2, and the evaporator temperature is 0°F. The refrigerant is a saturated vapor at the evaporator exit and a liquid at 110°F at the condenser exit. Pressure drops in the flows through the evaporator and condenser are negligible. The compression process is adiabatic, and the temperature at the compressor exit is 180°F. Determine (a) the mass...
Consider the vapor compression refrigeration cycle with tetrafluoroethane as refrigerant. If the evaporation temperature is 261.15...
Consider the vapor compression refrigeration cycle with tetrafluoroethane as refrigerant. If the evaporation temperature is 261.15 K, show the effect of condensation temperature on the coefficient of performance by making calculations for condensation temperature of 288.75 K and 300.15 K. Assume that vapor compression process isentropic and compressor efficiency is 80 %
an ideal vapor compression refrigeration cycle using refrigerant-134a as the working fluid is used to cool...
an ideal vapor compression refrigeration cycle using refrigerant-134a as the working fluid is used to cool a brine solution to -5degrees Celsius. This solution is pumped to various buildings for the purpose of air-conditioning. The refrigerant evaporates at -10 degrees Celsius with a total mass flow rate of 7kg/s and condenses at 600kPa Determine a) the COP of the cycle and b) The total cooling load