Question

1. A 100 kg metal block at 100°C went into an insulating container containing 1000 kg...

1. A 100 kg metal block at 100°C went into an insulating container containing 1000 kg of water at 20°C. After enough time had elapsed, water and metal temperatures became equal to each other. Here the meanness of metal and water is and respectively.
1) Find the final temperature.
2) Determine the entropy changes of water and copper during the process.
What is the total entropy change?

please answer quickly TT

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1.05 kg block of copper at 100°C is placed in an insulated calorimeter of negligible...
A 1.05 kg block of copper at 100°C is placed in an insulated calorimeter of negligible heat capacity containing 3.50 L of liquid water at 0.0°C. (a) Find the entropy change of the copper block. J/K (b) Find the entropy change of the water. J/K (c) Find the entropy change of the universe. J/K
An 8.2 kg, super-cold (-150 degrees C) block of copper is placed in a container with...
An 8.2 kg, super-cold (-150 degrees C) block of copper is placed in a container with 450 g of 100% liquid water at 0 degree C, and the container is sealed. At what temperature will we find the container much later? (Hint: note that the first thing the water does is to phase change to a solid).
A copper block is removed from a 320 ∘C oven and dropped into 1.20 kg of...
A copper block is removed from a 320 ∘C oven and dropped into 1.20 kg of water at 22.0 ∘C. The water quickly reaches 27.5 ∘C∘and then remains at that temperature. What is the mass of the copper block? The specific heats of copper and water are 385 J/(kg⋅K) and 4190 J/(kg⋅K) respectively. Express your answer with the appropriate units.
A 100-gram metal block is initially heated to 100 degrees Celsius. The copper block is then...
A 100-gram metal block is initially heated to 100 degrees Celsius. The copper block is then placed in 200-grams of water at 20 degrees Celsius. The block and the water are allowed to come to thermal equilibrium and reach a temperature of 23.52 degrees Celsius. a.) What is the change in temperature of the block and the water? b.) If the specific heat of water is 4.184 J/g C, what is the heat gained by the water? c.) What is...
A metal block of weight 50 kg heated to a uniform temperature of 227 degree C...
A metal block of weight 50 kg heated to a uniform temperature of 227 degree C is thrown into a large lake at 12 degree C. a) Determine the entropy change of the block, b) the entropy change of the lake water and c) the entropy generated during this process. Take c_p(metal) = 0.45kJ/kg.K. (Answers in two decimal points). 3 points Your answer
In a calorimetry experiment to determine the specific heat capacity of a metal block, the following...
In a calorimetry experiment to determine the specific heat capacity of a metal block, the following data was recorded: Quantity Mass of the metal block 0.50 kg Mass of empty calorimeter + Stirrer 0.06 kg Mass of calorimeter + stirrer + water 0.20 kg Mass of water 0.14 kg Initial Temperature of metal block 55.5 ⁰C Initial Temperature of water and calorimeter 22 ⁰C Final Temperature of block- water system 27.4 ⁰C Take the specific heat capacity of water to...
A cooper block having a mass of 10 kg and at a temperature of 800 K...
A cooper block having a mass of 10 kg and at a temperature of 800 K is placed in a well-insulated vessel containing 100 kg of water initially at 290 K. Calculate: a) Calculate the entropy change for the block, the water, and the total process. b) What is the maximum amount of work that could have been obtained from the copper block and water in a Carnot engine? The heat capacities are 4.185 kJ/kg/K for water and 0.398 kJ/kg/K...
A calorimeter made of copper (c=0.0923 cal/g-C°) of mass 300 g contains 450 grams of water....
A calorimeter made of copper (c=0.0923 cal/g-C°) of mass 300 g contains 450 grams of water. The container is initially at room temperature, 20°C. A 1 kg block of metal is heated to 100°C and placed in the water in the calorimeter. The final temperature of the system is 40°C. What is the specific heat of the metal?    A. 0.159 kcal/kg-C °    B. 0.591 kcal/kg-C° C. 0.519 kcal/kg-C° D. 0.915 kcal/kg-C°  
A 47.5 block of an unknown metal is heated in a hot water bath to 100...
A 47.5 block of an unknown metal is heated in a hot water bath to 100 degrees Celsius. When the block is placed in an insulated vessel containing 130.0 g of water at 25.0 degrees Celsius, the final temperature is 28.0 degrees Celsius. Determine the specific heat of the unknown metal. The Cs for water is 4.18 J/g degrees Celsius.
Calculate the specific heat of a metal (in calories/gram-degree C) from the following data. A container...
Calculate the specific heat of a metal (in calories/gram-degree C) from the following data. A container made of the metal has a mass of 3.80 kg and contains 13.1 kg of water. A 1.40 kg piece of the same metal, initially at a temperature of 140 degrees C, is placed in the water. The container and water initially have a temperature of 15 degrees C, and the final temperature of the entire system is 18 degrees C.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT