Question

A 220-g sample of copper is heated to 100∘∘C and placed into a cup containing 320...

A 220-g sample of copper is heated to 100∘∘C and placed into a cup containing 320 g of water initially at 30.0∘∘C. Ignore the container holding the water, assume no heat is lost or gained to the environment.

1)

Find the final equilibrium temperature of the copper and water.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 100-gram metal block is initially heated to 100 degrees Celsius. The copper block is then...
A 100-gram metal block is initially heated to 100 degrees Celsius. The copper block is then placed in 200-grams of water at 20 degrees Celsius. The block and the water are allowed to come to thermal equilibrium and reach a temperature of 23.52 degrees Celsius. a.) What is the change in temperature of the block and the water? b.) If the specific heat of water is 4.184 J/g C, what is the heat gained by the water? c.) What is...
A 235-g sample of a substance is heated to 320 ∘C and then plunged into a...
A 235-g sample of a substance is heated to 320 ∘C and then plunged into a 105-g aluminum calorimeter cup containing 175 g of water and a 17-g glass thermometer at 10.5 ∘C. The final temperature is 35.0∘C. The value of specific heat for aluminium is 900 J/kg⋅C∘ , for glass is 840 J/kg⋅C∘ , and for water is 4186 J/kg⋅C∘ . Part A What is the specific heat of the substance? (Assume no water boils away.) Express your answer...
Steam at 100°C is condensed into a 38.0 g copper calorimeter cup containing 260 g of...
Steam at 100°C is condensed into a 38.0 g copper calorimeter cup containing 260 g of water at 27.0°C. Determine the amount of steam (in g) needed for the system to reach a final temperature of 56.0°C. The specific heat of copper is 387 J/(kg · °C).
A 48.2 g sample of a metal is heated to 95.8 degrees C and placed in...
A 48.2 g sample of a metal is heated to 95.8 degrees C and placed in a coffee-cup calorimeter containing 79.0 g of water at a temperature of 18.5 degrees C. After the metal cools, the final temperature of the metal and water is 22.8 degrees C. Calculate the specific heat capacity of the metal, assuming that no heat escapes to the surroundings or is transferred to the calorimeter.
A 401−g piece of copper tubing is heated to 89.5°C and placed in an insulated vessel...
A 401−g piece of copper tubing is heated to 89.5°C and placed in an insulated vessel containing 159 g of water at 22.8°C. Assuming no loss of water and a heat capacity for the vessel of 10.0 J/°C, what is the final temperature of the system (c of copper = 0.387 J/g·°C)?
A 404−g piece of copper tubing is heated to 89.5°C and placed in an insulated vessel...
A 404−g piece of copper tubing is heated to 89.5°C and placed in an insulated vessel containing 159 g of water at 22.8°C. Assuming no loss of water and a heat capacity for the vessel of 10.0 J/°C, what is the final temperature of the system (c of copper = 0.387 J/g·°C)?
A 35.7 gram sample of iron (heat capacity 0.45 g/J°C) was heated to 99.10 °C and...
A 35.7 gram sample of iron (heat capacity 0.45 g/J°C) was heated to 99.10 °C and placed into a coffee cup calorimeter containing 42.92 grams of water initially at 15.15 °C. What will the final temperature of the system be? (Specific heat of water is 4.184 J/g°C). Please show work.
A 10.g cube of copper at a temperature T1 is placed in an insulated cup containing...
A 10.g cube of copper at a temperature T1 is placed in an insulated cup containing 10.g of water at a temperature T2. If T1>T2, which of the following is true of the system when it has attained thermal equillibrium? (The specific heat of copper is 0.385 J/g degrees C) and the specific heat of water is 4.184 J/g degrees C) A. The temperature of the copper changed more than the temperature of the water. B. The temperature of the...
300.0 g of copper is heated to 100.0*C and transferred quickly to a calorimeter containing 400.0...
300.0 g of copper is heated to 100.0*C and transferred quickly to a calorimeter containing 400.0 grams of water initially at 25.0*C. If the final temperature is 29.4*C, calculate the specific heat of copper. The specific heat of water is 4.18 J/g-*C. What assumptions must be made about the calorimeter? How is the first law of thermodynamics and law of conservation of energy used in this experiment.
A hot lump of 46.2 g of copper at an initial temperature of 93.9 °C is...
A hot lump of 46.2 g of copper at an initial temperature of 93.9 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the copper and water given that the specific heat of copper is 0.385 J/(g·°C)? Assume no heat is lost to surroundings.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT