Question

A metal block of weight 50 kg heated to a uniform temperature of 227 degree C...

A metal block of weight 50 kg heated to a uniform temperature of 227 degree C is thrown into a large lake at 12 degree C. a) Determine the entropy change of the block, b) the entropy change of the lake water and c) the entropy generated during this process. Take c_p(metal) = 0.45kJ/kg.K. (Answers in two decimal points).

3 points

Your answer

Homework Answers

Answer #1

Given data:

Mass of metal block = 50 kg

Temperature of Metal block = 227 ° C = 500 K

Temperature of water in large lake = 12 ° C = 285 K

Now,

Change in entopy of block is given by

(b) Entropy change in lake water =

From conservation of energy principle

Heat lost by metal = heat gained by lake water

therefore Entropy change in lake water

(C) Entropy Genrated =

from entropy principle

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A 100 kg metal block at 100°C went into an insulating container containing 1000 kg...
1. A 100 kg metal block at 100°C went into an insulating container containing 1000 kg of water at 20°C. After enough time had elapsed, water and metal temperatures became equal to each other. Here the meanness of metal and water is and respectively. 1) Find the final temperature. 2) Determine the entropy changes of water and copper during the process. What is the total entropy change? please answer quickly TT
An unknown metal of mass 0.280 kg is heated to 160.0°C and dropped in an aluminum...
An unknown metal of mass 0.280 kg is heated to 160.0°C and dropped in an aluminum calorimeter of mass 0.250 kg that contains 0.170 kg of water at 30°C. The calorimeter, water, and unknown metal have a final temperature of 46.0°C. Find the specific heat of the unknown metal. Hint: you need the specific heat of water and aluminum. Use units of [J/(kg.K)] and the values in your book for the specific heat.
A block of copper has a mass of 100 kg and an initial temperature of 900...
A block of copper has a mass of 100 kg and an initial temperature of 900 K. Copper can be modeled as an incompressible substance with a specific heat capacity of 0.4 kJ/kg-K. a.) The copper block is dropped into a large lake at 300 K and allowed to come to thermal equilibrium. How much entropy is generated (kJ/K)? b.) If a reversible heat engine were connected between the lake and the copper block and operated until the temperature of...
A 100-gram metal block is initially heated to 100 degrees Celsius. The copper block is then...
A 100-gram metal block is initially heated to 100 degrees Celsius. The copper block is then placed in 200-grams of water at 20 degrees Celsius. The block and the water are allowed to come to thermal equilibrium and reach a temperature of 23.52 degrees Celsius. a.) What is the change in temperature of the block and the water? b.) If the specific heat of water is 4.184 J/g C, what is the heat gained by the water? c.) What is...
A block made of cobalt with a mass of 0.80 kg is heated to 850°C, then...
A block made of cobalt with a mass of 0.80 kg is heated to 850°C, then dropped into 5.00 kg of water at 10°C. What is the total change in entropy (in J/K) of the block-water system, assuming no energy is lost by heat from this system to the surroundings? The specific heat of cobalt is 420 J/(kg · K), and the specific heat of water is 4,186 J/(kg · K). (Hint: note that dQ = mcdT.)
0.100 kg of water at 10∘C is added to 0.300 kg of soup at 50∘C. Assume...
0.100 kg of water at 10∘C is added to 0.300 kg of soup at 50∘C. Assume complete transfer of thermal energy from soup to the water, with no transfer of energy to the environment. Specific heat of water is 4180 J/kg⋅∘C. The soup has the same specific heat as water. A) Determine the final temperature? Express in Celsius B) Estimate the entropy change of this water-soup system during the process using the actual temperatures to determine the heat transferred and...
A 4.50-kg block of ice at 0.00∘C falls into the ocean and melts. The average temperature...
A 4.50-kg block of ice at 0.00∘C falls into the ocean and melts. The average temperature of the ocean is 3.50∘C, including all the deep water. By how much does the change of this ice to water at 3.50∘C alter the entropy of the world? (Hint: Do you think that the ocean temperature will change appreciably as the ice melts?) Does the entropy increase or decrease?
A cooper block having a mass of 10 kg and at a temperature of 800 K...
A cooper block having a mass of 10 kg and at a temperature of 800 K is placed in a well-insulated vessel containing 100 kg of water initially at 290 K. Calculate: a) Calculate the entropy change for the block, the water, and the total process. b) What is the maximum amount of work that could have been obtained from the copper block and water in a Carnot engine? The heat capacities are 4.185 kJ/kg/K for water and 0.398 kJ/kg/K...
A 25 kg aluminium ingot (initially at 72 °C), and a 50 kg fireclay brick (initially...
A 25 kg aluminium ingot (initially at 72 °C), and a 50 kg fireclay brick (initially at 68 °C)) are lowered into a large water reservoir at 16 °C. Both the aluminium ingot and fireclay brick reach the same temperature as the water, due to heat transfer between the blocks and the reservoir water. (a) Determine the total entropy change for this process. (b) With the aid of a diagram, briefly discuss the reversibility/irreversibility of all the heat transfer processes...
A 53.0-g metal weight, heated to 87.50°C, is placed into 191 g of water at 21.05°C...
A 53.0-g metal weight, heated to 87.50°C, is placed into 191 g of water at 21.05°C contained in a perfectly insulating thermos flask. After some time, the temperature inside the thermos flask stabilizes at 23.80°C. The specific heat capacity of water is approximately 4.18 J/K/g in the temperature range 16°C - 61°C. Calculate the specific heat capacity of the metal.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT