Question

A piston cylinder system contains 2 kg of R-134a under conditions of 100 kPa and 0.5...

A piston cylinder system contains 2 kg of R-134a under conditions of 100 kPa and 0.5 dryness.
Heat is supplied to the system from a 500 K source. If the exergy destroyed is 20 kJ, the final situation
what? Environmental temperature 300 K.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
0.75 kg of refrigerant-134a at 120 kPa and 20°C initially fills a piston-cylinder device. Heat is...
0.75 kg of refrigerant-134a at 120 kPa and 20°C initially fills a piston-cylinder device. Heat is now transferred to the refrigerant from a source at 150°C, and the piston which is resting on a set of stops, starts moving when the pressure inside reaches 140 kPa. Heat transfer continues until the temperature reaches 90°C. Assuming the surrounding to be at 25°C and 100 kPa, determine (a) the work done, (b) the heat transfer, (c) the exergy destroyed, and (d) the...
0.75 kg of refrigerant-134a at 120 kPa and 20°C initially fills a piston-cylinder device. Heat is...
0.75 kg of refrigerant-134a at 120 kPa and 20°C initially fills a piston-cylinder device. Heat is now transferred to the refrigerant from a source at 150°C, and the piston which is resting on a set of stops, starts moving when the pressure inside reaches 140 kPa. Heat transfer continues until the temperature reaches 90°C. Assuming the surrounding to be at 25°C and 100 kPa, determine (a) the work done, (b) the heat transfer, (c) the exergy destroyed, and (d) the...
A piston cylinder device contains 5 kg of Refrigerant 134a at 800 kPa and 70 C....
A piston cylinder device contains 5 kg of Refrigerant 134a at 800 kPa and 70 C. The refrigerant is now cooled at constant pressure until it reaches a saturated vapor state. How much heat was lost in the process? Express your result in kJ and you may ignore the negative sign.
A 0.2 m3 piston-cylinder initially contains 400 K air. A heavy frictionless piston maintains a pressure...
A 0.2 m3 piston-cylinder initially contains 400 K air. A heavy frictionless piston maintains a pressure of 500 kPa abs. Then, a weakness in the cylinder wall blows out and creates a hole. Air escapes through the hole until the piston drops far enough to cover the hole. At that point, the volume is half the initial volume. During this process, 75 kJ of heat is transferred to the 100 kPa, 300 K surroundings. Using Cp = 1.005 kJ/kg-K and...
Frictionless piston-cylinder system. Initially contains 167 L of saturated liquid Refrigerant-134a. The piston can move freely...
Frictionless piston-cylinder system. Initially contains 167 L of saturated liquid Refrigerant-134a. The piston can move freely in such that it maintains pressure at 877 kPa, an Isobaric process. The Refrigerant-134a is heated until its temperature rises to 70 ℃ Determine: The work was done during the process in (kJ) units?
A piston-cylinder device initially contains 75 g of saturated water vapor at 340 kPa . A...
A piston-cylinder device initially contains 75 g of saturated water vapor at 340 kPa . A resistance heater is operated within the cylinder with a current of 0.6 A from a 300 V source until the volume doubles. At the same time a heat loss of 7 kJ occurs. Part A)Determine the final temperature (T2). Part B)Determine the duration of the process. Part C) What-if scenario: What is the final temperature if the piston-cylinder device initially contains saturated liquid water?
Atmospheric pressure is 100 kPa in a system of cylinders and pistons.The mass of the piston...
Atmospheric pressure is 100 kPa in a system of cylinders and pistons.The mass of the piston is 4 kg and the area of ​​the piston is 4.0 cm2. The following process takes place by external heat transfer. (Gravity acceleration is 10 m / s2). 1. Calculate the pressure inside the cylinder in kPa. 2. The cylinder contains 0.1 kg of water vapor, and the temperature of the water vapor is 150oC. Find the volume and internal energy of water vapor...
A 0.2 m3 piston/cylinder contains air at 400 K and 400 kPa and receives heat from...
A 0.2 m3 piston/cylinder contains air at 400 K and 400 kPa and receives heat from a constant temperature heat source at 1300 K.   The piston expands at constant pressure to a volume of 0.6 m3. Determine the change of availability of the system.
A piston-cylinder contains 2 kg of refrigerant R-134a at temperature -20 degrees Celsius and a quality...
A piston-cylinder contains 2 kg of refrigerant R-134a at temperature -20 degrees Celsius and a quality of 20% is heated in device until it reaches a saturated mixture with quality 60%. a) Show process on a P-v and P-T diagram b) What is the pressure? c) What is the change in volume? d) What is the change in the internal energy? e) Redo the problem if the piston-cylinder assembly is replaced with a rigid container.
A piston cylinder device contains a mixture of 0.2 kg of H2 and 1.6 kg of...
A piston cylinder device contains a mixture of 0.2 kg of H2 and 1.6 kg of N2 at 100 kPa and 300K. Heat is now transferred to the mixture at constant pressure unitl the volume is doubled. Assuming constant specific heats at the average temperature (the constant pressure specific heats of H2 and N2 are 14.501 kJ/kg°K and 1.049 kJ/kg°K, respectively), determine: a) the heat transfer. b) the entropy change of the mixture.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT