Question

Atmospheric pressure is 100 kPa in a system of cylinders and pistons.The mass of the piston...

Atmospheric pressure is 100 kPa in a system of cylinders and pistons.The mass of the piston is 4 kg and the area of ​​the piston is 4.0 cm2. The following process takes place by external heat transfer. (Gravity acceleration is 10 m / s2).
1. Calculate the pressure inside the cylinder in kPa.

2. The cylinder contains 0.1 kg of water vapor, and the temperature of the water vapor is 150oC. Find the volume and internal energy of water vapor in the initial state.

3. When the energy is applied by heat transfer and the piston moves freely to a final volume of 0.29376 m3, find the work done externally by the piston in kJ.

4. Find the final temperature.

5. During the process, find the heat transfer in kJ.

 
 
 
 
 
 

Homework Answers

Answer #1

Solution in the uploaded images

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from...
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from saturated vapor at 500 kPa to a temperature of 260°C. Kinetic and potential energy effects are negligible. For the water: a) Evaluate the work, in kJ, b) If the work is 30 kJ, evaluate the heat transfer, in kJ, c) If the heat transfer is negligible, evaluate the entropy production in kJ/K d) Determine if the process is reversible, irreversible, or impossible.
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from...
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from an initial volume of 48 m3 to a final volume of 30 m3 . During the process, the piston supplies 1.2 MJ of work to the gas. The gas has a constant specific heat at constant volume of 1.80 kJ/(kg∙K) and a specific gas constant of 1.48 kJ/(kg∙K). Neglect potential and kinetic energy changes. a. Determine the initial specific volume of the gas in...
Water, initially (state 1) a saturated liquid at 1100C, is contained in a piston-cylinder assembly. The...
Water, initially (state 1) a saturated liquid at 1100C, is contained in a piston-cylinder assembly. The water undergoes a process to the corresponding saturated vapor (state 2), during which the piston moves freely in the cylinder. If the change of state is brought about by heating the water as it undergoes an internally reversible process at constant pressure and temperature, determine (a) heat transfer using first law of thermodynamics in kJ/kg and (b) heat transfer using second law of thermodynamics...
Oxygen gas is contained in a piston cylinder assembly at an initial pressure of 1000 kPa...
Oxygen gas is contained in a piston cylinder assembly at an initial pressure of 1000 kPa and expands from 0.2 m3 to 1.0 m3 by a process where PV = constant. The gas has an internal energy change of -200 kJ. Calculate the work (kJ) and the heat transfer (kJ) done during the process.
A 0.2 m3 piston-cylinder initially contains 400 K air. A heavy frictionless piston maintains a pressure...
A 0.2 m3 piston-cylinder initially contains 400 K air. A heavy frictionless piston maintains a pressure of 500 kPa abs. Then, a weakness in the cylinder wall blows out and creates a hole. Air escapes through the hole until the piston drops far enough to cover the hole. At that point, the volume is half the initial volume. During this process, 75 kJ of heat is transferred to the 100 kPa, 300 K surroundings. Using Cp = 1.005 kJ/kg-K and...
Think of the piston-cylinder system. Initially, it is filled with pressure of 8 atmosphere, water of...
Think of the piston-cylinder system. Initially, it is filled with pressure of 8 atmosphere, water of 0.1 m3 and steam of 0.9 m3. The piston moved freely and heat was transferred to expand, resulting in a final temperature of 350oC. (1) Initial temperature (2) Total mass of H2O (3) Final volume (4) Marked on the P-v lead
A piston-cylinder device initially contains 75 g of saturated water vapor at 340 kPa . A...
A piston-cylinder device initially contains 75 g of saturated water vapor at 340 kPa . A resistance heater is operated within the cylinder with a current of 0.6 A from a 300 V source until the volume doubles. At the same time a heat loss of 7 kJ occurs. Part A)Determine the final temperature (T2). Part B)Determine the duration of the process. Part C) What-if scenario: What is the final temperature if the piston-cylinder device initially contains saturated liquid water?
A cylinder fitted with a frictionless, massless piston contains compressed liquid water at a temperature T1=20C....
A cylinder fitted with a frictionless, massless piston contains compressed liquid water at a temperature T1=20C. The atmospheric pressure on the outside of the system is P=1.0 bar. Heat is then added until the water is completely converted to saturated vapor. (a) What are the changes in specific volume, v2-v1 (m3/kg) and internal energy, u2-u1 (kJ/kg) of the water for this process? (b) How much specific work, if any, is done by the system? (c) What is the amount of...
A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100...
A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100 kPa pressure. The gas is now compressed to a final temperature of 95oC at 250 kPa. This compression is polytropic and follows PVn=constant. a. Determine how much boundary work was added to the gas [in kJ] b. How much heat was added or removed from this system during this process? [in kJ]
A cylinder with a moveable piston holds 1.20 mol of argon at a constant temperature of...
A cylinder with a moveable piston holds 1.20 mol of argon at a constant temperature of 295 K. As the gas is compressed isothermally, its pressure increases from 101 kPa to 145 kPa. (a) Find the final volume of the gas. (answer in: m3) (b) Find the work done by the gas. (answer in: kJ) (c) Find the heat added to the gas. (.. kJ)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT