Question

Frictionless piston-cylinder system. Initially contains 167 L of saturated liquid Refrigerant-134a. The piston can move freely...

Frictionless piston-cylinder system.

Initially contains 167 L of saturated liquid Refrigerant-134a.

The piston can move freely in such that it maintains pressure at 877 kPa, an Isobaric process.

The Refrigerant-134a is heated until its temperature rises to 70 ℃

Determine:

The work was done during the process in (kJ) units?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A piston cylinder device contains 5 kg of Refrigerant 134a at 800 kPa and 70 C....
A piston cylinder device contains 5 kg of Refrigerant 134a at 800 kPa and 70 C. The refrigerant is now cooled at constant pressure until it reaches a saturated vapor state. How much heat was lost in the process? Express your result in kJ and you may ignore the negative sign.
A piston-cylinder contains 2 kg of refrigerant R-134a at temperature -20 degrees Celsius and a quality...
A piston-cylinder contains 2 kg of refrigerant R-134a at temperature -20 degrees Celsius and a quality of 20% is heated in device until it reaches a saturated mixture with quality 60%. a) Show process on a P-v and P-T diagram b) What is the pressure? c) What is the change in volume? d) What is the change in the internal energy? e) Redo the problem if the piston-cylinder assembly is replaced with a rigid container.
0.75 kg of refrigerant-134a at 120 kPa and 20°C initially fills a piston-cylinder device. Heat is...
0.75 kg of refrigerant-134a at 120 kPa and 20°C initially fills a piston-cylinder device. Heat is now transferred to the refrigerant from a source at 150°C, and the piston which is resting on a set of stops, starts moving when the pressure inside reaches 140 kPa. Heat transfer continues until the temperature reaches 90°C. Assuming the surrounding to be at 25°C and 100 kPa, determine (a) the work done, (b) the heat transfer, (c) the exergy destroyed, and (d) the...
0.75 kg of refrigerant-134a at 120 kPa and 20°C initially fills a piston-cylinder device. Heat is...
0.75 kg of refrigerant-134a at 120 kPa and 20°C initially fills a piston-cylinder device. Heat is now transferred to the refrigerant from a source at 150°C, and the piston which is resting on a set of stops, starts moving when the pressure inside reaches 140 kPa. Heat transfer continues until the temperature reaches 90°C. Assuming the surrounding to be at 25°C and 100 kPa, determine (a) the work done, (b) the heat transfer, (c) the exergy destroyed, and (d) the...
A piston-cylinder device initially contains 75 g of saturated water vapor at 340 kPa . A...
A piston-cylinder device initially contains 75 g of saturated water vapor at 340 kPa . A resistance heater is operated within the cylinder with a current of 0.6 A from a 300 V source until the volume doubles. At the same time a heat loss of 7 kJ occurs. Part A)Determine the final temperature (T2). Part B)Determine the duration of the process. Part C) What-if scenario: What is the final temperature if the piston-cylinder device initially contains saturated liquid water?
Water, initially (state 1) a saturated liquid at 1100C, is contained in a piston-cylinder assembly. The...
Water, initially (state 1) a saturated liquid at 1100C, is contained in a piston-cylinder assembly. The water undergoes a process to the corresponding saturated vapor (state 2), during which the piston moves freely in the cylinder. If the change of state is brought about by heating the water as it undergoes an internally reversible process at constant pressure and temperature, determine (a) heat transfer using first law of thermodynamics in kJ/kg and (b) heat transfer using second law of thermodynamics...
A 0.2 m3 piston-cylinder initially contains 400 K air. A heavy frictionless piston maintains a pressure...
A 0.2 m3 piston-cylinder initially contains 400 K air. A heavy frictionless piston maintains a pressure of 500 kPa abs. Then, a weakness in the cylinder wall blows out and creates a hole. Air escapes through the hole until the piston drops far enough to cover the hole. At that point, the volume is half the initial volume. During this process, 75 kJ of heat is transferred to the 100 kPa, 300 K surroundings. Using Cp = 1.005 kJ/kg-K and...
A cylinder fitted with a frictionless, massless piston contains compressed liquid water at a temperature T1=20C....
A cylinder fitted with a frictionless, massless piston contains compressed liquid water at a temperature T1=20C. The atmospheric pressure on the outside of the system is P=1.0 bar. Heat is then added until the water is completely converted to saturated vapor. (a) What are the changes in specific volume, v2-v1 (m3/kg) and internal energy, u2-u1 (kJ/kg) of the water for this process? (b) How much specific work, if any, is done by the system? (c) What is the amount of...
A vertical, insulated piston cylinder is filled with saturated liquid H2O at 50 kPa. A stirrer...
A vertical, insulated piston cylinder is filled with saturated liquid H2O at 50 kPa. A stirrer moves rapidly inside the cylinder until 22% of the H2O (by mass) evaporates. Determine the net work done (in kJ/kg), the change in entropy during this process (in kJ/kg-K) and the entropy generated during this process (in kJ/kg-K).
500 g of saturated liquid water is contained in a piston-cylinder arrangement. The inside diameter of...
500 g of saturated liquid water is contained in a piston-cylinder arrangement. The inside diameter of the cylinder is 100 mm. The water is heated at a constant pressure of 150 kPa until it becomes saturated vapor. Determine (a) the distance through which the piston is raised, and (b) the amount of energy transferred to the water.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT