Question

find the sum of the following series:[(-1)^n pi^2n+1]/4(16)^n (2n+1)

find the sum of the following series:[(-1)^n pi^2n+1]/4(16)^n (2n+1)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
find the sum of the series sigma n=0 to infinity {2 [3^(n/2 -2) / 7^(n+1)] +...
find the sum of the series sigma n=0 to infinity {2 [3^(n/2 -2) / 7^(n+1)] + sin ( (n+1)pi / 2n+1) - sin (n pi / 2n-1)}
Determine if the series converges conditionally, converges absolutely, or diverges. /sum(n=1 to infinity) ((-1)^n(2n^2))/(n^2+4) /sum(n=1 to...
Determine if the series converges conditionally, converges absolutely, or diverges. /sum(n=1 to infinity) ((-1)^n(2n^2))/(n^2+4) /sum(n=1 to infinity) sin(4n)/4^n
find the sun of the series sigma n=0 to infinity 2(3^n/2 -2)/7^n+1 + sin ( (n+1)pi...
find the sun of the series sigma n=0 to infinity 2(3^n/2 -2)/7^n+1 + sin ( (n+1)pi / 2n+1) - sin (npi/2n-1)
Consider the following series: lim n=1 to infinite 1 + 2n/ 3^n (a) Determine the value...
Consider the following series: lim n=1 to infinite 1 + 2n/ 3^n (a) Determine the value of s2, the second partial sum. (b) Does the series converge? Explain why or why not
Given: Sigma (infinity) (n=1) sin((2n-1)pi/2)ne^-n Question: Determine if the series converges or diverges Additional: If converges,...
Given: Sigma (infinity) (n=1) sin((2n-1)pi/2)ne^-n Question: Determine if the series converges or diverges Additional: If converges, is it conditional or absolute?
Find the Sum of a Convergent Series: a.) ∑∞?=0 (-4/9)n b.) ∑∞?=0 1/(n+1)(n+4)
Find the Sum of a Convergent Series: a.) ∑∞?=0 (-4/9)n b.) ∑∞?=0 1/(n+1)(n+4)
find the sum of the series (2^n+3^(n+1)+4^(n+2))/5^n.
find the sum of the series (2^n+3^(n+1)+4^(n+2))/5^n.
The Taylor series for the function arcsin(x)arcsin⁡(x) about x=0x=0 is equal to ∑n=0∞(2n)!4n(n!)2(2n+1)x2n+1.∑n=0∞(2n)!4n(n!)2(2n+1)x2n+1. For this question,...
The Taylor series for the function arcsin(x)arcsin⁡(x) about x=0x=0 is equal to ∑n=0∞(2n)!4n(n!)2(2n+1)x2n+1.∑n=0∞(2n)!4n(n!)2(2n+1)x2n+1. For this question, recall that 0!=10!=1. a) (6 points) What is the radius of convergence of this Taylor series? Write your final answer in a box. b) (4 points) Let TT be a constant that is within the radius of convergence you found. Write a series expansion for the following integral, using the Taylor series that is given. ∫T0arcsin(x)dx∫0Tarcsin⁡(x)dx Write your final answer in a box. c)...
1) Find the sum S of the series where S = Σ i ai -- here...
1) Find the sum S of the series where S = Σ i ai -- here i varies from 1 to n. Use the mathematical induction to prove the following: 2) 13 + 33 + 53 + …. + (2n-1)3 = n2(2n2-1) 3) Show that n! > 2n for all n > 3. 4) Show that 9(9n -1) – 8n is divisible by 64. Show all the steps and calculations for each of the above and explain your answer in...
find the Interval of convergence of 1. sum from {0}to{infinity} X ^ 2n / 3^n
find the Interval of convergence of 1. sum from {0}to{infinity} X ^ 2n / 3^n
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT