Question

(1 point) The three series ∑An, ∑Bn, and ∑Cn have terms An=1/n^8,Bn=1/n^5,Cn=1/n. Use the Limit Comparison...

(1 point) The three series ∑An, ∑Bn, and ∑Cn have terms An=1/n^8,Bn=1/n^5,Cn=1/n. Use the Limit Comparison Test to compare the following series to any of the above series. For each of the series below, you must enter two letters. The first is the letter (A,B, or C) of the series above that it can be legally compared to with the Limit Comparison Test. The second is C if the given series converges, or D if it diverges. So for instance, if you believe the series converges and can be compared with series C above, you would enter CC; or if you believe it diverges and can be compared with series A, you would enter AD.

1. ∑n=1∞ 5n^5+n^8/561n^13+3n^5+2
2. ∑n=1∞ 7n^5+n^2−7n/3n^13−2n^10+3
3. ∑n=1∞ 2n^2+7n^7/5n^8+3n^3−5​

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
6. Let series {an} = 1/(n2 + 1) and series {bn} = 1/n2. Use Limit Comparison...
6. Let series {an} = 1/(n2 + 1) and series {bn} = 1/n2. Use Limit Comparison Test to determine if each series is convergent or divergent. 7. Use Ratio Test to determine if series {an}= (n + 2)/(2n + 7) where n is in interval [0, ∞] is convergent or divergent. Note: if the test is inconclusive, use n-th Term Test to answer the question. 8. Use Root Test to determine if series {an} = nn/3(1 + 2n) where n...
Use the limit comparison test to determine whether the series Σ∞ n=1 (2^n)/(3+4^n) converges or diverges....
Use the limit comparison test to determine whether the series Σ∞ n=1 (2^n)/(3+4^n) converges or diverges. Show your work. What series did you use for the comparison? How did you figure out the behavior (converge or diverge) of the series that you used for the comparison?
Consider the series ∑n=1 ∞ an where an=(5n+5)^(9n+1)/ 12^n In this problem you must attempt to...
Consider the series ∑n=1 ∞ an where an=(5n+5)^(9n+1)/ 12^n In this problem you must attempt to use the Ratio Test to decide whether the series converges. Compute L= lim n→∞ ∣∣∣an+1/an∣∣ Enter the numerical value of the limit L if it converges, INF if the limit for L diverges to infinity, MINF if it diverges to negative infinity, or DIV if it diverges but not to infinity or negative infinity. L= Which of the following statements is true? A. The...
Find the sum of the following series:∞∑n=2 5^n/13^(n+3) Determine whether the following series are con-vergent or...
Find the sum of the following series:∞∑n=2 5^n/13^(n+3) Determine whether the following series are con-vergent or not. Show your work!∞∑n=2 5n^2+ 5n/7n^2+ 3n+ 6
1. Test the series below for convergence using the Root Test. ∞∑n=1 (4n/10n+1)^n The limit of...
1. Test the series below for convergence using the Root Test. ∞∑n=1 (4n/10n+1)^n The limit of the root test simplifies to lim n→∞ |f(n)| where f(n)= The limit is:     Based on this, the series Diverges Converges 2. We want to use the Alternating Series Test to determine if the series: ∞∑k=4 (−1)^k+2 k^2/√k^5+3 converges or diverges. We can conclude that: The Alternating Series Test does not apply because the terms of the series do not alternate. The Alternating Series Test...
Use the RATIO test to determine whether the series is convergent or divergent. a) sigma from...
Use the RATIO test to determine whether the series is convergent or divergent. a) sigma from n=1 to infinity of (1/n!) b) sigma from n=1 to infinity of (2n)!/(3n) Use the ROOT test to determine whether the series converges or diverges. a) sigma from n=1 to infinity of    (tan-1(n))-n b) sigma from n=1 to infinity of ((-2n)/(n+1))5n For each series, use and state any appropriate tests to decide if it converges or diverges. Be sure to verify all necessary...
1. The Taylor series for f(x)=x^3 at 1 is ∞∑n=0 cn(x−1)^n. Find the first few coefficients....
1. The Taylor series for f(x)=x^3 at 1 is ∞∑n=0 cn(x−1)^n. Find the first few coefficients. c0=    c1= c2=    c3= c4=   2. Given the series: ∞∑k=0 (−1/6)^k does this series converge or diverge? diverges converges If the series converges, find the sum of the series: ∞∑k=0 (−1/6)^k=
1. To test this series for convergence ∞∑n=1 n /√n^3+1 You could use the Limit Comparison...
1. To test this series for convergence ∞∑n=1 n /√n^3+1 You could use the Limit Comparison Test, comparing it to the series ∞∑n=1 1 /n^p where p= 2. Test the series below for convergence using the Ratio Test. ∞∑n=1 n^5/0.5^n The limit of the ratio test simplifies to lim n→∞|f(n)| where f(n)=    The limit is:
1. To test the series ∞∑k=1 1/5√k^3 for convergence, you can use the P-test. (You could...
1. To test the series ∞∑k=1 1/5√k^3 for convergence, you can use the P-test. (You could also use the Integral Test, as is the case with all series of this type.) According to the P-test: ∞∑k=1 1/5√k^3 converges the P-test does not apply to ∞∑k=1 1/5√k^3 ∞∑k=1 1/5√k^3 diverges Now compute s4, the partial sum consisting of the first 4 terms of ∞∑k=1 1 /5√k^3: s4= 2. Test the series below for convergence using the Ratio Test. ∞∑n=1 n^5 /1.2^n...
1) Find the interval of convergence I of the series. (Enter your answer using interval notation.)...
1) Find the interval of convergence I of the series. (Enter your answer using interval notation.) ∞ 7n (x + 5)n n n = 1 2) Find the radius of convergence, R, of the following series. ∞ n!(7x − 1)n n = 1 3) Suppose that the radius of convergence of the power series cn xn is R. What is the radius of convergence of the power series cn x5n ? 4) Find the radius of convergence, R, of the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT