Question

1. To test the series ∞∑k=1 1/5√k^3 for convergence, you can use the P-test. (You could...

1. To test the series ∞∑k=1 1/5√k^3 for convergence, you can use the P-test. (You could also use the Integral Test, as is the case with all series of this type.) According to the P-test:

  • ∞∑k=1 1/5√k^3 converges
  • the P-test does not apply to ∞∑k=1 1/5√k^3
  • ∞∑k=1 1/5√k^3 diverges

Now compute s4, the partial sum consisting of the first 4 terms of ∞∑k=1 1 /5√k^3:

s4=

2. Test the series below for convergence using the Ratio Test.
∞∑n=1 n^5 /1.2^n
The limit of the ratio test simplifies to lim n→∞ |f(n)| where
f(n)=   
The limit is:    
Based on this, the series diverges or converges?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Test the series below for convergence using the Root Test. ∞∑n=1 (4n/10n+1)^n The limit of...
1. Test the series below for convergence using the Root Test. ∞∑n=1 (4n/10n+1)^n The limit of the root test simplifies to lim n→∞ |f(n)| where f(n)= The limit is:     Based on this, the series Diverges Converges 2. We want to use the Alternating Series Test to determine if the series: ∞∑k=4 (−1)^k+2 k^2/√k^5+3 converges or diverges. We can conclude that: The Alternating Series Test does not apply because the terms of the series do not alternate. The Alternating Series Test...
1. To test this series for convergence ∞∑n=1 n /√n^3+1 You could use the Limit Comparison...
1. To test this series for convergence ∞∑n=1 n /√n^3+1 You could use the Limit Comparison Test, comparing it to the series ∞∑n=1 1 /n^p where p= 2. Test the series below for convergence using the Ratio Test. ∞∑n=1 n^5/0.5^n The limit of the ratio test simplifies to lim n→∞|f(n)| where f(n)=    The limit is:
Consider the series ∑n=1 ∞ an where an=(5n+5)^(9n+1)/ 12^n In this problem you must attempt to...
Consider the series ∑n=1 ∞ an where an=(5n+5)^(9n+1)/ 12^n In this problem you must attempt to use the Ratio Test to decide whether the series converges. Compute L= lim n→∞ ∣∣∣an+1/an∣∣ Enter the numerical value of the limit L if it converges, INF if the limit for L diverges to infinity, MINF if it diverges to negative infinity, or DIV if it diverges but not to infinity or negative infinity. L= Which of the following statements is true? A. The...
1)| The region bounded by f(x)=−1x^2+5x+14 x=0, and y=0 is rotated about the y-axis. Find the...
1)| The region bounded by f(x)=−1x^2+5x+14 x=0, and y=0 is rotated about the y-axis. Find the volume of the solid of revolution. Find the exact value; write answer without decimals. 2) Now compute s4, the partial sum consisting of the first 4 terms of ∞∑k=1/7√k5: s4= 3) Test the series below for convergence using the Ratio Test. ∞∑n=1 n^2/0.9^n The limit of the ratio test simplifies to limn→∞|f(n)| where f(n)= The limit is:
1. Test the series below for convergence using the Root Test. ∞∑n=1 (2n^2 / 9n+3)^n The...
1. Test the series below for convergence using the Root Test. ∞∑n=1 (2n^2 / 9n+3)^n The limit of the root test simplifies to limn→∞|f(n)|limn→∞|f(n)| where f(n)= 2. Test the series below for convergence using the Root Test. ∞∑n=1 (4n+4 / 5n+3)^n The limit of the root test simplifies to limn→∞|f(n)| where f(n)=   The limit is:
Determine if the series, k = 1 to ∞ , with terms (-1)k ((k - 1)/(k3/2...
Determine if the series, k = 1 to ∞ , with terms (-1)k ((k - 1)/(k3/2 + 1))2 converges absolutely, converges conditionally, or diverges. Tell which convergence test you are using.
Test the series for convergence or divergence. ∞ (−1)n 8n − 5 9n + 5 n...
Test the series for convergence or divergence. ∞ (−1)n 8n − 5 9n + 5 n = 1 Step 1 To decide whether ∞ (−1)n 8n − 5 9n + 5 n = 1 converges, we must find lim n → ∞ 8n − 5 9n + 5 . The highest power of n in the fraction is 1    1 . Step 2 Dividing numerator and denominator by n gives us lim n → ∞ 8n − 5 9n +...
Determine whether the series Summation from n equals 0 to infinity e Superscript negative 5 n∑n=0∞e^−5n...
Determine whether the series Summation from n equals 0 to infinity e Superscript negative 5 n∑n=0∞e^−5n converges or diverges. If it​ converges, find its sum. Select the correct choice below​ and, if​ necessary, fill in the answer box within your choice. A.The series converges because ModifyingBelow lim With n right arrow infinitylimn→∞ e Superscript negative 5 ne−5nequals=0. The sum of the series is nothing. ​(Type an exact​ answer.) B.The series diverges because it is a geometric series with StartAbsoluteValue r...
Use the limit comparison test to determine whether the series Σ∞ n=1 (2^n)/(3+4^n) converges or diverges....
Use the limit comparison test to determine whether the series Σ∞ n=1 (2^n)/(3+4^n) converges or diverges. Show your work. What series did you use for the comparison? How did you figure out the behavior (converge or diverge) of the series that you used for the comparison?
(1 point) The three series ∑An, ∑Bn, and ∑Cn have terms An=1/n^8,Bn=1/n^5,Cn=1/n. Use the Limit Comparison...
(1 point) The three series ∑An, ∑Bn, and ∑Cn have terms An=1/n^8,Bn=1/n^5,Cn=1/n. Use the Limit Comparison Test to compare the following series to any of the above series. For each of the series below, you must enter two letters. The first is the letter (A,B, or C) of the series above that it can be legally compared to with the Limit Comparison Test. The second is C if the given series converges, or D if it diverges. So for instance,...