Question

1. To test the series ∞∑k=1 1/5√k^3 for convergence, you can use the P-test. (You could...

1. To test the series ∞∑k=1 1/5√k^3 for convergence, you can use the P-test. (You could also use the Integral Test, as is the case with all series of this type.) According to the P-test:

  • ∞∑k=1 1/5√k^3 converges
  • the P-test does not apply to ∞∑k=1 1/5√k^3
  • ∞∑k=1 1/5√k^3 diverges

Now compute s4, the partial sum consisting of the first 4 terms of ∞∑k=1 1 /5√k^3:

s4=

2. Test the series below for convergence using the Ratio Test.
∞∑n=1 n^5 /1.2^n
The limit of the ratio test simplifies to lim n→∞ |f(n)| where
f(n)=   
The limit is:    
Based on this, the series diverges or converges?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Test the series below for convergence using the Root Test. ∞∑n=1 (4n/10n+1)^n The limit of...
1. Test the series below for convergence using the Root Test. ∞∑n=1 (4n/10n+1)^n The limit of the root test simplifies to lim n→∞ |f(n)| where f(n)= The limit is:     Based on this, the series Diverges Converges 2. We want to use the Alternating Series Test to determine if the series: ∞∑k=4 (−1)^k+2 k^2/√k^5+3 converges or diverges. We can conclude that: The Alternating Series Test does not apply because the terms of the series do not alternate. The Alternating Series Test...
Consider the series ∑n=1 ∞ an where an=(5n+5)^(9n+1)/ 12^n In this problem you must attempt to...
Consider the series ∑n=1 ∞ an where an=(5n+5)^(9n+1)/ 12^n In this problem you must attempt to use the Ratio Test to decide whether the series converges. Compute L= lim n→∞ ∣∣∣an+1/an∣∣ Enter the numerical value of the limit L if it converges, INF if the limit for L diverges to infinity, MINF if it diverges to negative infinity, or DIV if it diverges but not to infinity or negative infinity. L= Which of the following statements is true? A. The...
1)| The region bounded by f(x)=−1x^2+5x+14 x=0, and y=0 is rotated about the y-axis. Find the...
1)| The region bounded by f(x)=−1x^2+5x+14 x=0, and y=0 is rotated about the y-axis. Find the volume of the solid of revolution. Find the exact value; write answer without decimals. 2) Now compute s4, the partial sum consisting of the first 4 terms of ∞∑k=1/7√k5: s4= 3) Test the series below for convergence using the Ratio Test. ∞∑n=1 n^2/0.9^n The limit of the ratio test simplifies to limn→∞|f(n)| where f(n)= The limit is:
Test the series for convergence or divergence. ∞ (−1)n 8n − 5 9n + 5 n...
Test the series for convergence or divergence. ∞ (−1)n 8n − 5 9n + 5 n = 1 Step 1 To decide whether ∞ (−1)n 8n − 5 9n + 5 n = 1 converges, we must find lim n → ∞ 8n − 5 9n + 5 . The highest power of n in the fraction is 1    1 . Step 2 Dividing numerator and denominator by n gives us lim n → ∞ 8n − 5 9n +...
Determine whether the series Summation from n equals 0 to infinity e Superscript negative 5 n∑n=0∞e^−5n...
Determine whether the series Summation from n equals 0 to infinity e Superscript negative 5 n∑n=0∞e^−5n converges or diverges. If it​ converges, find its sum. Select the correct choice below​ and, if​ necessary, fill in the answer box within your choice. A.The series converges because ModifyingBelow lim With n right arrow infinitylimn→∞ e Superscript negative 5 ne−5nequals=0. The sum of the series is nothing. ​(Type an exact​ answer.) B.The series diverges because it is a geometric series with StartAbsoluteValue r...
(1 point) The three series ∑An, ∑Bn, and ∑Cn have terms An=1/n^8,Bn=1/n^5,Cn=1/n. Use the Limit Comparison...
(1 point) The three series ∑An, ∑Bn, and ∑Cn have terms An=1/n^8,Bn=1/n^5,Cn=1/n. Use the Limit Comparison Test to compare the following series to any of the above series. For each of the series below, you must enter two letters. The first is the letter (A,B, or C) of the series above that it can be legally compared to with the Limit Comparison Test. The second is C if the given series converges, or D if it diverges. So for instance,...
1. The Taylor series for f(x)=x^3 at 1 is ∞∑n=0 cn(x−1)^n. Find the first few coefficients....
1. The Taylor series for f(x)=x^3 at 1 is ∞∑n=0 cn(x−1)^n. Find the first few coefficients. c0=    c1= c2=    c3= c4=   2. Given the series: ∞∑k=0 (−1/6)^k does this series converge or diverge? diverges converges If the series converges, find the sum of the series: ∞∑k=0 (−1/6)^k=
For the next two series, (1) find the interval of convergence and (2) study convergence at...
For the next two series, (1) find the interval of convergence and (2) study convergence at the end points of the interval if any. Also, (3) indicate for what values of x the series converges absolutely, conditionally, or not at all. You must indicate the test you use and show the interval of convergence both analytically and graphically and summarize your results on the picture. ∑∞ n=1 ((−1)^n−1)/ (n^1/4)) *x^n
1) Suppose that p(x)=∞∑n=0 anx^n converges on (−1, 1], find the internal of convergence of p(8x−5)....
1) Suppose that p(x)=∞∑n=0 anx^n converges on (−1, 1], find the internal of convergence of p(8x−5). x= to x= 2)Given that 11−x=∞∑n=0xn11-x=∑n=0∞x^n with convergence in (−1, 1), find the power series for 1/9−x with center 3. ∞∑n=0 Identify its interval of convergence. The series is convergent from x= to x=
Use the RATIO test to determine whether the series is convergent or divergent. a) sigma from...
Use the RATIO test to determine whether the series is convergent or divergent. a) sigma from n=1 to infinity of (1/n!) b) sigma from n=1 to infinity of (2n)!/(3n) Use the ROOT test to determine whether the series converges or diverges. a) sigma from n=1 to infinity of    (tan-1(n))-n b) sigma from n=1 to infinity of ((-2n)/(n+1))5n For each series, use and state any appropriate tests to decide if it converges or diverges. Be sure to verify all necessary...