Question

Consider the series ∑n=1 ∞ an where an=(5n+5)^(9n+1)/ 12^n In this problem you must attempt to...

Consider the series ∑n=1 ∞ an where

an=(5n+5)^(9n+1)/ 12^n

In this problem you must attempt to use the Ratio Test to decide whether the series converges.

Compute

L= lim n→∞ ∣∣∣an+1/an∣∣

Enter the numerical value of the limit L if it converges, INF if the limit for L diverges to infinity, MINF if it diverges to negative infinity, or DIV if it diverges but not to infinity or negative infinity.
L=

Which of the following statements is true?
A. The Ratio Test says that the series converges absolutely.
B. The Ratio Test says that the series diverges.
C. The Ratio Test says that the series converges conditionally.
D. The Ratio Test is inconclusive, but the series converges absolutely by another test or tests.
E. The Ratio Test is inconclusive, but the series diverges by another test or tests.
F. The Ratio Test is inconclusive, but the series converges conditionally by another test or tests.
Enter the letter for your choice here: ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine if the series converges conditionally, converges absolutely, or diverges. /sum(n=1 to infinity) ((-1)^n(2n^2))/(n^2+4) /sum(n=1 to...
Determine if the series converges conditionally, converges absolutely, or diverges. /sum(n=1 to infinity) ((-1)^n(2n^2))/(n^2+4) /sum(n=1 to infinity) sin(4n)/4^n
Test the series for convergence or divergence. ∞ (−1)n 8n − 5 9n + 5 n...
Test the series for convergence or divergence. ∞ (−1)n 8n − 5 9n + 5 n = 1 Step 1 To decide whether ∞ (−1)n 8n − 5 9n + 5 n = 1 converges, we must find lim n → ∞ 8n − 5 9n + 5 . The highest power of n in the fraction is 1    1 . Step 2 Dividing numerator and denominator by n gives us lim n → ∞ 8n − 5 9n +...
Find a general term (as a function of the variable n) for the sequence{?1,?2,?3,?4,…}={45,1625,64125,256625,…}{a1,a2,a3,a4,…}={45,1625,64125,256625,…}. Find a...
Find a general term (as a function of the variable n) for the sequence{?1,?2,?3,?4,…}={45,1625,64125,256625,…}{a1,a2,a3,a4,…}={45,1625,64125,256625,…}. Find a general term (as a function of the variable n) for the sequence {?1,?2,?3,?4,…}={4/5,16/25,64/125,256/625,…} an= Determine whether the sequence is divergent or convergent. If it is convergent, evaluate its limit. (If it diverges to infinity, state your answer as inf . If it diverges to negative infinity, state your answer as -inf . If it diverges without being infinity or negative infinity, state your answer...
Use the ratio test to determine whether∑n=12∞n2+55n converges or diverges. (a) Find the ratio of successive...
Use the ratio test to determine whether∑n=12∞n2+55n converges or diverges. (a) Find the ratio of successive terms. Write your answer as a fully simplified fraction. For n≥12, limn→∞∣∣∣an+1an∣∣∣=limn→∞ (b) Evaluate the limit in the previous part. Enter ∞ as infinity and −∞ as -infinity. If the limit does not exist, enter DNE. limn→∞∣∣∣an+1an∣∣∣ =   (c) By the ratio test, does the series converge, diverge, or is the test inconclusive?
Use the RATIO test to determine whether the series is convergent or divergent. a) sigma from...
Use the RATIO test to determine whether the series is convergent or divergent. a) sigma from n=1 to infinity of (1/n!) b) sigma from n=1 to infinity of (2n)!/(3n) Use the ROOT test to determine whether the series converges or diverges. a) sigma from n=1 to infinity of    (tan-1(n))-n b) sigma from n=1 to infinity of ((-2n)/(n+1))5n For each series, use and state any appropriate tests to decide if it converges or diverges. Be sure to verify all necessary...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT