Question

A rectangular recreational field needs to be built outside of a gymnasium. Three walls of fencing...

A rectangular recreational field needs to be built outside of a gymnasium. Three walls of fencing are needed and the fourth wall is to be a wall of the gymnasium itself. The ideal area for such a field is exactly 810000ft2. In order to minimize costs, it is necessary to construct the fencing using the least amount of material possible. Assuming that the material used in the fencing costs $45/ft, what is the least amount of money needed to build this fence of ideal area? Round your answer to the nearest two decimal places.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A fence must be built to enclose a rectangular area of 5000 ft^2. Fencing material costs...
A fence must be built to enclose a rectangular area of 5000 ft^2. Fencing material costs $4 per foot for the two sides facing north and south and $8 per foot for the other two sides. Find the cost of the least expensive fence. The cost of the least expensive fence is $_
A fence must be built to enclose a rectangular area of 20,000ft2. Fencing material costs $1...
A fence must be built to enclose a rectangular area of 20,000ft2. Fencing material costs $1 per foot for the two sides facing north and south and $2 per foot for the other two sides. Find the cost of the least expensive fence. The cost of the least expensive fence is $____.
A fence is to be built to enclose cows in a rectangular area of 200 square...
A fence is to be built to enclose cows in a rectangular area of 200 square feet. The fence along three sides is to be made of material that costs $5 per foot, and the material for the fourth side costs $16 dollars per foot. Find the dimensions of the enclosure that minimize cost, and give the minimum cost to build the fence
A farmer has 800 ft of fencing, and wants to fence off a rectangular field that...
A farmer has 800 ft of fencing, and wants to fence off a rectangular field that borders a river with a straight bank. She needs no fence along the river. What are the dimensions of the field of largest area?
A fence must be built to enclose a rectangular area of 140,000 m2. Fencing material costs...
A fence must be built to enclose a rectangular area of 140,000 m2. Fencing material costs $7 per metre for the two sides facing north and south, and $4 per metre for the other two sides. Find the cost of the least expensive fence. Justify your result.
Xiao is fencing in a 2000 square yard rectangular area around their oceanside cabin. They do...
Xiao is fencing in a 2000 square yard rectangular area around their oceanside cabin. They do not need to build a fence along the waterline. Regular fencing costs $7 per yard. Fencing that is perpendicular to the waterline requires a special material to account for changing tides, and costs $15 per yard. What dimensions should Xiao use in order to minimize the cost of the fence? Round each dimension to the nearest tenth.
A rectangular field is to be enclosed on four sides with a fence. Fencing costs $4...
A rectangular field is to be enclosed on four sides with a fence. Fencing costs $4 per foot for two opposite sides, and $8 per foot for the other two sides. Find the dimensions of the field of area 880 ft 2 that would be the cheapest to enclose.
(Optimization) A rectangular field is to be fenced off along a river where no fence is...
(Optimization) A rectangular field is to be fenced off along a river where no fence is needed on the side along the river. If the fence for the two ends costs $12/ft and the fence for the side parallel to the river is $18/ft. Determine the dimensions of the field that can be enclosed with the largest possible area. Total funds available for fencing: $5,400
A rectangular field is to be enclosed on four sides with a fence. Fencing costs $8...
A rectangular field is to be enclosed on four sides with a fence. Fencing costs $8 per foot for two opposite sides, and $3 per foot for the other two sides. Find the dimensions of the field of area 870 ft2 that would be the cheapest to enclose. A) 11.1 ft @ $8 by 78.7 ft @ $3 B) 18.1 ft @ $8 by 48.2 ft @ $3 C) 78.7 ft @ $8 by 11.1 ft @ $3 D) 48.2...
A farmer needs to build a rectangular pen with one side bordered by a river (that...
A farmer needs to build a rectangular pen with one side bordered by a river (that side does not need a fence). He wants the pen to have an area of 200 sq. ft. What should the dimensions of the pen be to use the smallest amount of fencing around the three fenced sides? Support your answer using derivatives
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT