Question

A rectangular field is to be enclosed on four sides with a fence. Fencing costs $4...

A rectangular field is to be enclosed on four sides with a fence. Fencing costs $4 per foot for two opposite sides, and $8 per foot for the other two sides. Find the dimensions of the field of area 880 ft 2 that would be the cheapest to enclose.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A rectangular field is to be enclosed on four sides with a fence. Fencing costs $8...
A rectangular field is to be enclosed on four sides with a fence. Fencing costs $8 per foot for two opposite sides, and $3 per foot for the other two sides. Find the dimensions of the field of area 870 ft2 that would be the cheapest to enclose. A) 11.1 ft @ $8 by 78.7 ft @ $3 B) 18.1 ft @ $8 by 48.2 ft @ $3 C) 78.7 ft @ $8 by 11.1 ft @ $3 D) 48.2...
Solve the problem. A rectangular field is to be enclosed on four sides with a fence....
Solve the problem. A rectangular field is to be enclosed on four sides with a fence. Fencing costs $2 per foot for two opposite sides, and $7 per foot for the other two sides. Find the dimensions of the field of area 610 ft2 that would be the cheapest to enclose.
A rectangular field is to be enclosed on 4 sides with a fence with an area...
A rectangular field is to be enclosed on 4 sides with a fence with an area of 690 ft². Fencing costs $2 per foot for 2 opposite sides and $7 per foot for the other 2 sides. The equations for this question are: Constraint: xy = 690 Objective: Perimeter (Cost) = 14x + 4y Find the following: a) The dimensions that will minimize the cost. Round the dimensions to 1 decimal place. You may use the rounded dimension to find...
A fence must be built to enclose a rectangular area of 5000 ft^2. Fencing material costs...
A fence must be built to enclose a rectangular area of 5000 ft^2. Fencing material costs $4 per foot for the two sides facing north and south and $8 per foot for the other two sides. Find the cost of the least expensive fence. The cost of the least expensive fence is $_
A fence must be built to enclose a rectangular area of 20,000ft2. Fencing material costs $1...
A fence must be built to enclose a rectangular area of 20,000ft2. Fencing material costs $1 per foot for the two sides facing north and south and $2 per foot for the other two sides. Find the cost of the least expensive fence. The cost of the least expensive fence is $____.
A fence must be built to enclose a rectangular area of 140,000 m2. Fencing material costs...
A fence must be built to enclose a rectangular area of 140,000 m2. Fencing material costs $7 per metre for the two sides facing north and south, and $4 per metre for the other two sides. Find the cost of the least expensive fence. Justify your result.
(Optimization) A rectangular field is to be fenced off along a river where no fence is...
(Optimization) A rectangular field is to be fenced off along a river where no fence is needed on the side along the river. If the fence for the two ends costs $12/ft and the fence for the side parallel to the river is $18/ft. Determine the dimensions of the field that can be enclosed with the largest possible area. Total funds available for fencing: $5,400
A rectangular field with one side along a river is to be fenced. Suppose that no...
A rectangular field with one side along a river is to be fenced. Suppose that no fence is needed along the river, the fence on the side opposite the river costs $40 per foot, and the fence on the other sides costs $10 per foot. If the field must contain 72,200 square feet, what dimensions will minimize costs? side parallel to the river     ft each of the other sides     ft
A farmer wants to enclose a rectangular field by a fence and divide it into 2...
A farmer wants to enclose a rectangular field by a fence and divide it into 2 smaller but equal rectangular fields by constructing another fence parallel to one side. He has 6,000 yards of fencing.(a) draw picture (b) Find the dimensions of the field so that the total area is a maximum. (c)  Find the dimensions of the rectangular field the farmer can make the will contain the largest area.
A farmer has 800 ft of fencing, and wants to fence off a rectangular field that...
A farmer has 800 ft of fencing, and wants to fence off a rectangular field that borders a river with a straight bank. She needs no fence along the river. What are the dimensions of the field of largest area?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT