Question

Let’s now complete the “open box” question mentioned in the previous question. Suppose we have 1200in2...

Let’s now complete the “open box” question mentioned in the previous question. Suppose we have 1200in2 of material that we will use to create a box that has a rectangular base (the base may or may not be a square), but no top. What dimensions maximize the volume?

(a) Draw a sketch of the box in this question. Appropriately label the relevant information in your sketch.

(b) Based on your sketch above, what equation is being maximized?

(c) Based on your sketch above, what equation represents the given constraint?

(d) If we also know that the base is a square, find the dimensions of the box that gives the largest volume.

(e) How much material is used on the base? How much material is used on the sides? Do you notice anything about the amount of material used on the sides compared to the base? What about the right/left, the front/back, and the base? Depending on your labeling, this might be 2*width*height, 2*length*height and length*width (the first two are multiplied by 2, representing the two sides with those dimensions).

(f) Does your conjecture in the previous question need any revision? If so, make a revised conjecture.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A box with a square base and open top must have a volume of 202612 cm3....
A box with a square base and open top must have a volume of 202612 cm3. We wish to find the dimensions of the box that minimize the amount of material used. (Round your answer to the nearest tenthousandths if necessary.) Length = Width = Height =
A box with a square base and open top must have a volume of 296352 cm3....
A box with a square base and open top must have a volume of 296352 cm3. We wish to find the dimensions of the box that minimize the amount of material used. (Round your answer to the nearest tenthousandths if necessary.) Length = Width = Height =
We have to build a box that has no top and whose base length is five...
We have to build a box that has no top and whose base length is five times the base width. we have $1000 to buy materials to build this box. if the material for the sides cost $10 per square inch and the material for the bottom cost $15 per square inch determine the dimensions of the box that will have the greatest volume.
A rectangular storage container with an open top has a volume of 10 m3 . The...
A rectangular storage container with an open top has a volume of 10 m3 . The length of the base is twice its width. Material for the base costs $10 per sqaure meter and material for the sides costs $6 per square meter. (a) Find an equation for the volume of the box, relating the variables of the height of the box and the width of the base of the box. (b) Use the previous equation to solve for the...
A rectangular box must have a volume of 2 cubic meters. The material for the base...
A rectangular box must have a volume of 2 cubic meters. The material for the base and top costs $ 2 per square meter. The material for the vertical sides costs $ 8 per square meter. (a) Express the total cost of the box in terms of the length (l) and width (w) of the base. C = $ (b) Find the dimensions of the box that costs least. length = meters width = meters height = meters
A box with an open top has a square base and four sides of equal height....
A box with an open top has a square base and four sides of equal height. The volume of the box is 225 ft cubed. The height is 4 ft greater than both the length and the width. If the surface area is 205 ft squared. what are the dimensions of the​ box? What is the width of the box?. What is the length of the box?
A rectangular box is to have a square base and a volume of 16 ft3. If...
A rectangular box is to have a square base and a volume of 16 ft3. If the material for the base costs $0.14/ft2, the material for the sides costs $0.06/ft2, and the material for the top costs $0.10/ft2, determine the dimensions (in ft) of the box that can be constructed at minimum cost. (Refer to the figure below.) A closed rectangular box has a length of x, a width of x, and a height of y.
An open-topped box is to have a square base and a volume of 10 ?3. The...
An open-topped box is to have a square base and a volume of 10 ?3. The cost per square meter of material is $5 for the bottom and $2 for the four sides. Let ? be the length of the base of the box and ℎ be the height of the box. Let ? be the total cost of material required to make the box. a. Express ? as a function of ? and find its domain. b. Find the...
Minimizing Packaging Costs A rectangular box is to have a square base and a volume of...
Minimizing Packaging Costs A rectangular box is to have a square base and a volume of 20 ft3. If the material for the base costs $0.28/ft2, the material for the sides costs $0.10/ft2, and the material for the top costs $0.22/ft2, determine the dimensions (in ft) of the box that can be constructed at minimum cost. (Refer to the figure below.) A closed rectangular box has a length of x, a width of x, and a height of y. x...
A box with a square base and open top must have a volume of 108000 cm^3....
A box with a square base and open top must have a volume of 108000 cm^3. We wish to find the dimensions of the box that minimize the amount of material used. First, find a formula for the surface area of the box in terms of only x, the length of one side of the square base. [Hint: use the volume formula to express the height of the box in terms of x.] Simplify your formula as much as possible....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT