Question

An open-topped box is to have a square base and a volume of 10 ?3. The...

An open-topped box is to have a square base and a volume of 10 ?3. The cost per square meter of material is $5 for the bottom and $2 for the four sides. Let ? be the length of the base of the box and ℎ be the height of the box. Let ? be the total cost of material required to make the box.

a. Express ? as a function of ? and find its domain.

b. Find the dimensions of the box so that the cost of materials is minimized. What is the minimum cost? Be sure to show why your answer gives a global minimum.

Homework Answers

Answer #2

https://betflik168.games/

answered by: MichaelGresiker
Answer #3

https://betflik168.games/

source: https://betflik168.games/
answered by: MichaelGresiker
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A box with square base and open top is to have a volume of 10?3 ....
A box with square base and open top is to have a volume of 10?3 . Material for the base costs $10 per square meter and material for the sides costs $8 per square meter. Determine the dimensions of the cheapest such container. Use the first or second derivative test to verify that your answer is a minimum.
There is an open-topped box that will have 5 sides.. The box to contain a volume...
There is an open-topped box that will have 5 sides.. The box to contain a volume of 6 ft3 and to have a square base. The base needs a stronger material which costs $3 per ft2. For the other sides I’ll use a material that costs $2 per ft2. What are the dimensions of the box that minimize the cost?
A box with a square base and open top must have a volume of 108000 cm^3....
A box with a square base and open top must have a volume of 108000 cm^3. We wish to find the dimensions of the box that minimize the amount of material used. First, find a formula for the surface area of the box in terms of only x, the length of one side of the square base. [Hint: use the volume formula to express the height of the box in terms of x.] Simplify your formula as much as possible....
A rectangular box must have a volume of 2 cubic meters. The material for the base...
A rectangular box must have a volume of 2 cubic meters. The material for the base and top costs $ 2 per square meter. The material for the vertical sides costs $ 8 per square meter. (a) Express the total cost of the box in terms of the length (l) and width (w) of the base. C = $ (b) Find the dimensions of the box that costs least. length = meters width = meters height = meters
A box with a square base and open top must have a volume of 157216 cm3cm3....
A box with a square base and open top must have a volume of 157216 cm3cm3. We wish to find the dimensions of the box that minimize the amount of material used. First, find a formula for the surface area of the box in terms of only xx, the length of one side of the square base. [Hint: use the volume formula to express the height of the box in terms of xx.] Simplify your formula as much as possible....
An open-top box has a square bottom and is made to have a volume of 50in^3....
An open-top box has a square bottom and is made to have a volume of 50in^3. The material for the base costs $10 a sq in and the material for the sides is $6 a sq in. What dimensions minimize cost
A rectangular box is to have a square base and a volume of 16 ft3. If...
A rectangular box is to have a square base and a volume of 16 ft3. If the material for the base costs $0.14/ft2, the material for the sides costs $0.06/ft2, and the material for the top costs $0.10/ft2, determine the dimensions (in ft) of the box that can be constructed at minimum cost. (Refer to the figure below.) A closed rectangular box has a length of x, a width of x, and a height of y.
A box with a square base and open top must have a volume of 364500 cm3cm3....
A box with a square base and open top must have a volume of 364500 cm3cm3. We wish to find the dimensions of the box that minimize the amount of material used. First, find a formula for the surface area of the box in terms of only xx, the length of one side of the square base. [Hint: use the volume formula to express the height of the box in terms of xx.] Simplify your formula as much as possible....
A box with a square base and open top must have a volume of 202612 cm3....
A box with a square base and open top must have a volume of 202612 cm3. We wish to find the dimensions of the box that minimize the amount of material used. (Round your answer to the nearest tenthousandths if necessary.) Length = Width = Height =
A box with a square base and open top must have a volume of 296352 cm3....
A box with a square base and open top must have a volume of 296352 cm3. We wish to find the dimensions of the box that minimize the amount of material used. (Round your answer to the nearest tenthousandths if necessary.) Length = Width = Height =
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT