Question

A box with a square base and open top must have a volume of 202612 cm3....

A box with a square base and open top must have a volume of 202612 cm3. We wish to find the dimensions of the box that minimize the amount of material used.

(Round your answer to the nearest tenthousandths if necessary.)


Length =
Width =
Height =

Homework Answers

Answer #1

The Volume of a box with a square base x by x cm and height h cm is V=x2h

The amount of material used is directly proportional to the surface area, so we will minimize the amount of material by minimizing the surface area.

The surface area of the box described is A=x^2+4xh

We need A as a function of x alone, so we'll use the fact that
V=x2h=202612 cm^3

which gives us h=32,000x2, so the area becomes:

A=x^2+4x(202612/x^2)=x^2+810448/x

We want to minimize A, so

A'=2x−810448/x2=0 when (2x^3−810448)x^2=0

Which occurs when x^3-405224 or x=74

The only critical number is x=74 cm.

The second derivative test verifies that A has a minimum at this critical number:
A''=2+1620896/x3 which is positive at x=74

The box should have base 74 cm by 74 cm and height 37 cm.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A box with a square base and open top must have a volume of 296352 cm3....
A box with a square base and open top must have a volume of 296352 cm3. We wish to find the dimensions of the box that minimize the amount of material used. (Round your answer to the nearest tenthousandths if necessary.) Length = Width = Height =
A box with a square base and an open top must have a volume of 864...
A box with a square base and an open top must have a volume of 864 cm^3. Find the dimensions of the box that minimize the amount of material used.  
A box with a square base and open top must have a volume of 108000 cm^3....
A box with a square base and open top must have a volume of 108000 cm^3. We wish to find the dimensions of the box that minimize the amount of material used. First, find a formula for the surface area of the box in terms of only x, the length of one side of the square base. [Hint: use the volume formula to express the height of the box in terms of x.] Simplify your formula as much as possible....
A box with a square base and open top must have a volume of 157216 cm3cm3....
A box with a square base and open top must have a volume of 157216 cm3cm3. We wish to find the dimensions of the box that minimize the amount of material used. First, find a formula for the surface area of the box in terms of only xx, the length of one side of the square base. [Hint: use the volume formula to express the height of the box in terms of xx.] Simplify your formula as much as possible....
A box with a square base and open top must have a volume of 364500 cm3cm3....
A box with a square base and open top must have a volume of 364500 cm3cm3. We wish to find the dimensions of the box that minimize the amount of material used. First, find a formula for the surface area of the box in terms of only xx, the length of one side of the square base. [Hint: use the volume formula to express the height of the box in terms of xx.] Simplify your formula as much as possible....
a box with a square base and open top must have a volume of 62.5 cm^3...
a box with a square base and open top must have a volume of 62.5 cm^3 . find the dimension of the box that minimize the amount of materials used.
1- An open box with a square base is to have a volume of 10 ft3....
1- An open box with a square base is to have a volume of 10 ft3. (a) Find a function that models the surface area A of the box in terms of the length of one side of the base x. (b) Find the box dimensions that minimize the amount of material used. (Round your answers to two decimal places.) 2- Find the dimensions that give the largest area for the rectangle. Its base is on the x-axis and its...
A company plans to manufacture a rectangular box with a square base, an open top, and...
A company plans to manufacture a rectangular box with a square base, an open top, and a volume of 404 cm3. The cost of the material for the base is 0.5 cents per square centimeter, and the cost of the material for the sides is 0.1 cents per square centimeter. Determine the dimensions of the box that will minimize the cost of manufacturing it. What is the minimum cost?
A rectangular box must have a volume of 2 cubic meters. The material for the base...
A rectangular box must have a volume of 2 cubic meters. The material for the base and top costs $ 2 per square meter. The material for the vertical sides costs $ 8 per square meter. (a) Express the total cost of the box in terms of the length (l) and width (w) of the base. C = $ (b) Find the dimensions of the box that costs least. length = meters width = meters height = meters
A box with square base and open top is to have a volume of 10?3 ....
A box with square base and open top is to have a volume of 10?3 . Material for the base costs $10 per square meter and material for the sides costs $8 per square meter. Determine the dimensions of the cheapest such container. Use the first or second derivative test to verify that your answer is a minimum.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT