Question

A box with an open top has a square base and four sides of equal height....

A box with an open top has a square base and four sides of equal height. The volume of the box is 225 ft cubed. The height is 4 ft greater than both the length and the width. If the surface area is 205 ft squared. what are the dimensions of the​ box?

What is the width of the box?.

What is the length of the box?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An open rectangular box (no top) is formed with a square base and rectangular sides so...
An open rectangular box (no top) is formed with a square base and rectangular sides so that the total volume enclosed is 475 cu. ft. What is the smallest amount of material (area) that can form such a box?
A box with a square base and open top must have a volume of 202612 cm3....
A box with a square base and open top must have a volume of 202612 cm3. We wish to find the dimensions of the box that minimize the amount of material used. (Round your answer to the nearest tenthousandths if necessary.) Length = Width = Height =
A box with a square base and open top must have a volume of 296352 cm3....
A box with a square base and open top must have a volume of 296352 cm3. We wish to find the dimensions of the box that minimize the amount of material used. (Round your answer to the nearest tenthousandths if necessary.) Length = Width = Height =
A box with a square base and open top must have a volume of 108000 cm^3....
A box with a square base and open top must have a volume of 108000 cm^3. We wish to find the dimensions of the box that minimize the amount of material used. First, find a formula for the surface area of the box in terms of only x, the length of one side of the square base. [Hint: use the volume formula to express the height of the box in terms of x.] Simplify your formula as much as possible....
A box with a square base and open top must have a volume of 157216 cm3cm3....
A box with a square base and open top must have a volume of 157216 cm3cm3. We wish to find the dimensions of the box that minimize the amount of material used. First, find a formula for the surface area of the box in terms of only xx, the length of one side of the square base. [Hint: use the volume formula to express the height of the box in terms of xx.] Simplify your formula as much as possible....
A rectangular box is to have a square base and a volume of 16 ft3. If...
A rectangular box is to have a square base and a volume of 16 ft3. If the material for the base costs $0.14/ft2, the material for the sides costs $0.06/ft2, and the material for the top costs $0.10/ft2, determine the dimensions (in ft) of the box that can be constructed at minimum cost. (Refer to the figure below.) A closed rectangular box has a length of x, a width of x, and a height of y.
Problem: A box with an open top is to be constructed from a square piece of...
Problem: A box with an open top is to be constructed from a square piece of cardboard, with sides 6 meters in length, by cutting a square from each of the four corners and bending up the sides. Find the dimensions that maximize the volume of the box and the maximum volume.
Minimizing Packaging Costs A rectangular box is to have a square base and a volume of...
Minimizing Packaging Costs A rectangular box is to have a square base and a volume of 20 ft3. If the material for the base costs $0.28/ft2, the material for the sides costs $0.10/ft2, and the material for the top costs $0.22/ft2, determine the dimensions (in ft) of the box that can be constructed at minimum cost. (Refer to the figure below.) A closed rectangular box has a length of x, a width of x, and a height of y. x...
A rectangular box with a volume of 272 ft. cubed is to be constructed with a...
A rectangular box with a volume of 272 ft. cubed is to be constructed with a square base and top. The cost per square foot for the bottom is15cents, for the top is10cents, and for the other sides is 2.5 cents. What dimensions will minimize the​ cost? What are the dimensions of the box? The length of on side of the base is ___ The height of the box is___ (Rounds to one decimal place as needed)
A rectangular storage container with an open top has a volume of 10 m3 . The...
A rectangular storage container with an open top has a volume of 10 m3 . The length of the base is twice its width. Material for the base costs $10 per sqaure meter and material for the sides costs $6 per square meter. (a) Find an equation for the volume of the box, relating the variables of the height of the box and the width of the base of the box. (b) Use the previous equation to solve for the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT