Question

Find the eigenvalues of A = {{-2,2,3},{-2,3,2},{-4,2,5}} and a basis for the eigenspace corresponding to each...

Find the eigenvalues of A = {{-2,2,3},{-2,3,2},{-4,2,5}} and a basis for the eigenspace corresponding to each eigenvalue. Please help with the eigenspace

Homework Answers

Answer #1

Solution: The characteristic equation is

  The eigenvalues of are   

for

By and   

Put

  is tha basis for   

for   

By    and

By    and

By

Put

  is tha basis for   

for   

By    and

By    and   

By      and

Put

  is tha basis for   

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the characteristic equation of A, the eigenvalues of A, and a basis for the eigenspace...
Find the characteristic equation of A, the eigenvalues of A, and a basis for the eigenspace corresponding to each eigenvalue. A = −2 1 6 0 1 1 0 0 9 I found the eigenvalues to be (-2, 1,9). How do I find the basis for the eigenspace corresponding to each eigenvalue? (c) a basis for the eigenspace corresponding to each eigenvalue
find the eigenvalues of the following matrix. then find the corresponding eigenvector(s) of one ofthose eigenvalues...
find the eigenvalues of the following matrix. then find the corresponding eigenvector(s) of one ofthose eigenvalues (pick your favorite). 1 -2 0 -1 1 -1 0 -2 1
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 0 −3 5...
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 0 −3 5 −4 4 −10 0 0 4 (a) the characteristic equation (b) the eigenvalues (Enter your answers from smallest to largest.) (λ1, λ2, λ3) = the corresponding eigenvectors x1 = x2 = x3 =
Suppose A ∈ Rk×k is symmetric. Find the eigenvalues and corresponding eigenvectors for A + cIk...
Suppose A ∈ Rk×k is symmetric. Find the eigenvalues and corresponding eigenvectors for A + cIk where Ik ∈ Rk×k is the identity matrix and c ∈ R is a constant
Find the eigenvalues and the eigenvectors corresponding to them of the matrix -2 1 3 0...
Find the eigenvalues and the eigenvectors corresponding to them of the matrix -2 1 3 0 -2 6 0 0 4
Decide if each of the following statements are true or false. If a statement is true,...
Decide if each of the following statements are true or false. If a statement is true, explain why it is true. If the statement is false, give an example showing that it is false. (a) Let A be an n x n matrix. One root of its characteristic polynomial is 4. The dimension of the eigenspace corresponding to the eigenvalue 4 is at least 1. (b) Let A be an n x n matrix. A is not invertible if and...
Complex Eigenstuff Compute the eigenvalues and eigenvectors for the given matrix A. List the eigenvalues so...
Complex Eigenstuff Compute the eigenvalues and eigenvectors for the given matrix A. List the eigenvalues so the first one has negative imaginary part. Write the corresponding eigenvectors in the form [u+iv1]. If there is only one eigenvector, leave the entries for the second eigenvalue and eigenvector blank. A=[4 -3 3 4]
The matrix [−1320−69] has eigenvalues λ1=−1 and λ2=−3. Find eigenvectors corresponding to these eigenvalues. v⃗ 1=...
The matrix [−1320−69] has eigenvalues λ1=−1 and λ2=−3. Find eigenvectors corresponding to these eigenvalues. v⃗ 1= ⎡⎣⎢⎢ ⎤⎦⎥⎥ and v⃗ 2= ⎡⎣⎢⎢ ⎤⎦⎥⎥ Find the solution to the linear system of differential equations [x′1 x′2]=[−13 20−6 9][x1 x2] satisfying the initial conditions [x1(0)x2(0)]=[6−9]. x1(t)= ______ x2(t)= _____
Q‒5. [8+4+8 marks] Let Find the eigenvalues of A and the corresponding eigenvectors. Find a matrix...
Q‒5. [8+4+8 marks] Let Find the eigenvalues of A and the corresponding eigenvectors. Find a matrix P and a diagonal matrix D such thatD=P-1AP . Using the equationD=P-1AP , computeA27 .
The questions this week is about diagonalizability of matrices when we have fewer than n different...
The questions this week is about diagonalizability of matrices when we have fewer than n different eigenvalues. Recall the following facts as starting points: • An n × n matrix is diagonalizable if and only if it has n linearly independent eigenvectors. • Eigenvectors with different eigenvalues must be linearly independent. • The number of times an eigenvalue appears as a root of the characteristic polynomial is at least the dimension of the corresponding eigenspace, and the total degree of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT