Question

find the eigenvalues of the following matrix. then find the corresponding eigenvector(s) of one ofthose eigenvalues...

find the eigenvalues of the following matrix. then find the corresponding eigenvector(s) of one ofthose eigenvalues (pick your favorite).

1 -2 0
-1 1 -1
0 -2 1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the 3 * 3 matrix A corresponding to orthogonal projection onto the solution space of...
Find the 3 * 3 matrix A corresponding to orthogonal projection onto the solution space of the system below. 2x + 3y + z = 0; x - 3y - z = 0: Your solution should contain the following information: (a) The eigenvector(s) of A that is (are) contained in the solution space; (b) The eigenvector(s) of A that is (are) perpendicular to the solution space; (c) The corresponding eigenvalues for those eigenvectors.
Find the eigenvalues and the eigenvectors corresponding to them of the matrix -2 1 3 0...
Find the eigenvalues and the eigenvectors corresponding to them of the matrix -2 1 3 0 -2 6 0 0 4
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 0 −3 5...
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 0 −3 5 −4 4 −10 0 0 4 (a) the characteristic equation (b) the eigenvalues (Enter your answers from smallest to largest.) (λ1, λ2, λ3) = the corresponding eigenvectors x1 = x2 = x3 =
Complex Eigenstuff Compute the eigenvalues and eigenvectors for the given matrix A. List the eigenvalues so...
Complex Eigenstuff Compute the eigenvalues and eigenvectors for the given matrix A. List the eigenvalues so the first one has negative imaginary part. Write the corresponding eigenvectors in the form [u+iv1]. If there is only one eigenvector, leave the entries for the second eigenvalue and eigenvector blank. A=[4 -3 3 4]
The matrix [−1320−69] has eigenvalues λ1=−1 and λ2=−3. Find eigenvectors corresponding to these eigenvalues. v⃗ 1=...
The matrix [−1320−69] has eigenvalues λ1=−1 and λ2=−3. Find eigenvectors corresponding to these eigenvalues. v⃗ 1= ⎡⎣⎢⎢ ⎤⎦⎥⎥ and v⃗ 2= ⎡⎣⎢⎢ ⎤⎦⎥⎥ Find the solution to the linear system of differential equations [x′1 x′2]=[−13 20−6 9][x1 x2] satisfying the initial conditions [x1(0)x2(0)]=[6−9]. x1(t)= ______ x2(t)= _____
Verify that u=[1,13]T is an eigenvector of the matrix [[ -8,1],[-13,6]]. Find the corresponding eigenvalue lambda.
Verify that u=[1,13]T is an eigenvector of the matrix [[ -8,1],[-13,6]]. Find the corresponding eigenvalue lambda.
Q‒5. [8+4+8 marks] Let Find the eigenvalues of A and the corresponding eigenvectors. Find a matrix...
Q‒5. [8+4+8 marks] Let Find the eigenvalues of A and the corresponding eigenvectors. Find a matrix P and a diagonal matrix D such thatD=P-1AP . Using the equationD=P-1AP , computeA27 .
Suppose A is a real 2x2 matrix with complex eigenvalues α ± i β , β...
Suppose A is a real 2x2 matrix with complex eigenvalues α ± i β , β ≠ 0. It was shown in class that the corresponding eigenvectors will be complex. Suppose that a + i b is an eigenvector for α + i β , for some real vectors a , b . Show that a − i b is an eigenvector corresponding to α − i β . Hint: properties of the complex conjugate may be useful. Please show...
Let A be an symmetric matrix. Assume that A has two different eigenvalues ?1 ?= ?2....
Let A be an symmetric matrix. Assume that A has two different eigenvalues ?1 ?= ?2. Let v1 be a ?1-eigenvector, and v2 be and ?2-eigenvector. Show that v1 ? v2. (Hint: v1T Av2 = v2T Av1.)
Normally, we start with a matrix and find the eigenvalues and eigenvectors. But it’s interesting to...
Normally, we start with a matrix and find the eigenvalues and eigenvectors. But it’s interesting to see if this process can be performed in reverse. Suppose that a 2x2 matrix has eigenvalues of +2 and -1 but no info on the eigenvectors. Can you find the matrix? How many matrices would have these eigenvalues?