Question

Suppose that the vector field F(x,y,z) has potential function f(x,y,z) = y2+ 3xz and C is...

Suppose that the vector field F(x,y,z) has potential function f(x,y,z) = y2+ 3xz and C is a path from (1,1,−1) to (0,5,π). Compute ∫CF·dr.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The function f(x, y) = x^−2 y^3 is a potential for a vector field F. Use...
The function f(x, y) = x^−2 y^3 is a potential for a vector field F. Use this to evaluate ∫ C F · dr where C is a curve from (1, 1) to (2, 2).
Consider the vector field F(x,y,z)=〈−3y,−3x,−4z〉. Find a potential function f(x,y,z) for F which satisfies f(0,0,0)=0.
Consider the vector field F(x,y,z)=〈−3y,−3x,−4z〉. Find a potential function f(x,y,z) for F which satisfies f(0,0,0)=0.
For each vector field F~ (x, y) = hP(x, y), Q(x, y)i, find a function f(x,...
For each vector field F~ (x, y) = hP(x, y), Q(x, y)i, find a function f(x, y) such that F~ (x, y) = ∇f(x, y) = h ∂f ∂x , ∂f ∂y i by integrating P and Q with respect to the appropriate variables and combining answers. Then use that potential function to directly calculate the given line integral (via the Fundamental Theorem of Line Integrals): a) F~ 1(x, y) = hx 2 , y2 i Z C F~ 1...
a. Is F(x,y,z)= <(e^z)siny,(e^z)cosx,(e^x)siny> a conservative vector field? Justify. b. Is F incompressible? Explain. Is it...
a. Is F(x,y,z)= <(e^z)siny,(e^z)cosx,(e^x)siny> a conservative vector field? Justify. b. Is F incompressible? Explain. Is it irrotational? Explain. c. The vector field F(x,y,z)= < 6xy^2+e^z, 6yx^2 +zcos(y),sin(y)xe^z > is conservative. Find the potential function f. That is, the function f such that ▽f=F. Use a process.
2. Suppose that F(x,y) is a conservative vector field with potential function f(x,y). Suppose that every...
2. Suppose that F(x,y) is a conservative vector field with potential function f(x,y). Suppose that every vector in F is horizontal (ie: has y component 0). What can you deduce about f?
Problem 7. Consider the line integral Z C y sin x dx − cos x dy....
Problem 7. Consider the line integral Z C y sin x dx − cos x dy. a. Evaluate the line integral, assuming C is the line segment from (0, 1) to (π, −1). b. Show that the vector field F = <y sin x, − cos x> is conservative, and find a potential function V (x, y). c. Evaluate the line integral where C is any path from (π, −1) to (0, 1).
Let F(x,y,z) = yzi + xzj + (xy+2z)k show that vector field F is conservative by...
Let F(x,y,z) = yzi + xzj + (xy+2z)k show that vector field F is conservative by finding a function f such that and use that to evaluate where C is any path from (1,0,-2) to (4,6,3)
Compute ∫∫S F·dS for the vector field F(x,y,z) =〈0,0,x2+y2〉through the surface given by x^2+y^2+z^2= 4, z≥0...
Compute ∫∫S F·dS for the vector field F(x,y,z) =〈0,0,x2+y2〉through the surface given by x^2+y^2+z^2= 4, z≥0 with outward pointing normal. Please explain and show work. Thank you so much.
2. Is the vector field F = < z cos(y), −xz sin(y), x cos(y)> conservative? Why...
2. Is the vector field F = < z cos(y), −xz sin(y), x cos(y)> conservative? Why or why not? If F is conservative, then find its potential function.
(a) Is the vector field F = <e^(−x) cos y, e^(−x) sin y> conservative? (b) If...
(a) Is the vector field F = <e^(−x) cos y, e^(−x) sin y> conservative? (b) If so, find the associated potential function φ. (c) Evaluate Integral C F*dr, where C is the straight line path from (0, 0) to (2π, 2π). (d) Write the expression for the line integral as a single integral without using the fundamental theorem of calculus.