Question

Compute ∫∫S F·dS for the vector field F(x,y,z) =〈0,0,x2+y2〉through the surface given by x^2+y^2+z^2= 4, z≥0 with outward pointing normal.

Please explain and show work.

Thank you so much.

Answer #1

**Please give me a like............**

Compute the surface integral over the given oriented
surface:
F=〈0,9,x2〉F=〈0,9,x2〉 , hemisphere
x2+y2+z2=4x2+y2+z2=4, z≥0z≥0 , outward-pointing
normal

Calculate the line integral of the vector field
?=〈?,?,?2+?2〉F=〈y,x,x2+y2〉 around the boundary curve, the curl of
the vector field, and the surface integral of the curl of the
vector field.
The surface S is the upper hemisphere
?2+?2+?2=36, ?≥0x2+y2+z2=36, z≥0
oriented with an upward‑pointing normal.
(Use symbolic notation and fractions where needed.)
∫?⋅??=∫CF⋅dr=
curl(?)=curl(F)=
∬curl(?)⋅??=∬Scurl(F)⋅dS=

Evaluate the surface integral S F · dS for the given vector
field F and the oriented surface S. In other words, find the flux
of F across S. For closed surfaces, use the positive (outward)
orientation. F(x, y, z) = x2 i + y2 j + z2 k S is the boundary of
the solid half-cylinder 0 ≤ z ≤ 25 − y2 , 0 ≤ x ≤ 3

F · dS
for the given vector field F and the oriented
surface S. In other words, find the flux of
F across S. For closed surfaces, use the
positive (outward) orientation.
F(x, y, z) = x2 i + y2 j + z2
k
S is the boundary of the solid half-cylinder 0 ≤ z
≤(9-y^2)^1/2
, 0 ≤ x ≤ 3
Please provide a final answer as this is where I have an
issue.

Evaluate the surface integral
S
F · dS
for the given vector field F and the oriented
surface S. In other words, find the flux of
F across S. For closed surfaces, use the
positive (outward) orientation.
F(x, y, z) = yi − xj + 2zk,
S is the hemisphere
x2 + y2 + z2 = 4,
z ≥ 0,
oriented downward

Evaluate the surface integral
S
F · dS
for the given vector field F and the oriented
surface S. In other words, find the flux of
F across S. For closed surfaces, use the
positive (outward) orientation.
F(x, y, z) = xy i + yz j + zx k
S is the part of the paraboloid
z = 4 − x2 − y2 that lies above the square
0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
and has...

Evaluate the surface integral
S
F · dS
for the given vector field F and the oriented
surface S. In other words, find the flux of
F across S. For closed surfaces, use the
positive (outward) orientation.
F(x, y, z) = xy i + yz j + zx k
S is the part of the paraboloid
z = 6 − x2 − y2 that lies above the square
0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
and has...

Evaluate the surface integral
S
F · dS
for the given vector field F and the oriented
surface S. In other words, find the flux of
F across S. For closed surfaces, use the
positive (outward) orientation.
F(x, y, z) = xy i + yz j + zx k
S is the part of the paraboloid
z = 6 − x2 − y2 that lies above the square
0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
and...

Evaluate the surface integral
S
F · dS
for the given vector field F and the oriented
surface S. In other words, find the flux of
F across S. For closed surfaces, use the
positive (outward) orientation.
F(x, y, z) = −xi − yj + z3k,
S is the part of the cone z =
x2 + y2
between the planes
z = 1
and
z = 2
with downward orientation

Evaluate the surface integral ∫∫S F · dS for the given vector
field F and the oriented surface S. In other words, find the flux
of F across S. For closed surfaces, use the positive (outward)
orientation. F(x, y, z) = xz i + x j + y k S is the hemisphere x2 +
y2 + z2 = 4, y ≥ 0, oriented in the direction of the positive
y-axis. Incorrect: Your answer is incorrect.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 4 minutes ago

asked 24 minutes ago

asked 26 minutes ago

asked 29 minutes ago

asked 33 minutes ago

asked 39 minutes ago

asked 43 minutes ago

asked 51 minutes ago

asked 58 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago