Question

For each vector field F~ (x, y) = hP(x, y), Q(x, y)i, find a function f(x,...

For each vector field F~ (x, y) = hP(x, y), Q(x, y)i, find a function f(x, y) such that F~ (x, y) = ∇f(x, y) = h ∂f ∂x , ∂f ∂y i by integrating P and Q with respect to the appropriate variables and combining answers. Then use that potential function to directly calculate the given line integral (via the Fundamental Theorem of Line Integrals):

a) F~ 1(x, y) = hx 2 , y2 i Z C F~ 1 · d~r C is the line segment from (1, 0) to (3, −2).

b) F~ 2(x, y) = h2xy, x2 + 2yi Z C F~ 2 · d~r C is the parabola ~r(t) = ht 2 + 2, −3ti, 0 ≤ t ≤ 1.

Homework Answers

Answer #1

:)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. a) Let F(x,y) = hcosy,−xsiny + 2yi. Show that F is conservative, and find a...
1. a) Let F(x,y) = hcosy,−xsiny + 2yi. Show that F is conservative, and find a function φ such that ∇φ(x,y) = F(x,y). b) Use the result from part a) to find R C F · Tds, where C is given by r(t) = ht,πti,0 ≤ t ≤ 1.
1. (a) Determine whether or not F is a conservative vector field. If it is, find...
1. (a) Determine whether or not F is a conservative vector field. If it is, find the potential function for F. (b) Evaluate R C1 F · dr and R C2 F · dr where C1 is the straight line path from (0, −1) to (3, 0), while C2 is the union of two straight line paths: first piece from (0, −1) to (0, 0) and then second piece from (0, 0) to (3, 0). (When applicable, use the Fundamental...
(a) Is the vector field F = <e^(−x) cos y, e^(−x) sin y> conservative? (b) If...
(a) Is the vector field F = <e^(−x) cos y, e^(−x) sin y> conservative? (b) If so, find the associated potential function φ. (c) Evaluate Integral C F*dr, where C is the straight line path from (0, 0) to (2π, 2π). (d) Write the expression for the line integral as a single integral without using the fundamental theorem of calculus.
Sketch the central field F = (x /(x2 + y2)1/2)i + (y /(x2 + y2)1/2) j...
Sketch the central field F = (x /(x2 + y2)1/2)i + (y /(x2 + y2)1/2) j and the curve C consisting of the parabola y = 2 − x2 from (−1, 1) to (1, 1) to determine whether you expect the work done by F on a particle moving along C to be positive, null, or negative. Then compute the line integral corresponding to the work.
1.) Let f ( x , y , z ) = x ^3 + y +...
1.) Let f ( x , y , z ) = x ^3 + y + z + sin ⁡ ( x + z ) + e^( x − y). Determine the line integral of f ( x , y , z ) with respect to arc length over the line segment from (1, 0, 1) to (2, -1, 0) 2.) Letf ( x , y , z ) = x ^3 * y ^2 + y ^3 * z^...
Evaluate the line integral C F · dr, where C is given by the vector function...
Evaluate the line integral C F · dr, where C is given by the vector function r(t). F(x, y) = xy i + 9y2 j r(t) = 16t6 i + t4 j, 0 ≤ t ≤ 1
Evaluate the line integral ∫CF⋅dr, where F(x,y,z)=5xi+yj−2zk and C is given by the vector function r(t)=〈sint,cost,t〉,...
Evaluate the line integral ∫CF⋅dr, where F(x,y,z)=5xi+yj−2zk and C is given by the vector function r(t)=〈sint,cost,t〉, 0≤t≤3π/2.
2. Consider the line integral I C F · d r, where the vector field F...
2. Consider the line integral I C F · d r, where the vector field F = x(cos(x 2 ) + y)i + 2y 3 (e y sin3 y + x 3/2 )j and C is the closed curve in the first quadrant consisting of the curve y = 1 − x 3 and the coordinate axes x = 0 and y = 0, taken anticlockwise. (a) Use Green’s theorem to express the line integral in terms of a double...
Compute the line integral of f(x, y, z) = x 2 + y 2 − cos(z)...
Compute the line integral of f(x, y, z) = x 2 + y 2 − cos(z) over the following paths: (a) the line segment from (0, 0, 0) to (3, 4, 5) (b) the helical path → r (t) = cos(t) i + sin(t) j + t k from (1, 0, 0) to (1, 0, 2π)
(1 point) Evaluate the line integral ∫CF⋅dr∫CF⋅dr, where F(x,y,z)=3xi+4yj-zk and C is given by the vector...
(1 point) Evaluate the line integral ∫CF⋅dr∫CF⋅dr, where F(x,y,z)=3xi+4yj-zk and C is given by the vector function r(t)=〈sint,cost,t〉, 0≤t≤3π/2.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT