Question

2. Suppose that F(x,y) is a conservative vector field with potential function f(x,y). Suppose that every...

2. Suppose that F(x,y) is a conservative vector field with potential function f(x,y). Suppose that every vector in F is horizontal (ie: has y component 0). What can you deduce about f?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2. Is the vector field F = < z cos(y), −xz sin(y), x cos(y)> conservative? Why...
2. Is the vector field F = < z cos(y), −xz sin(y), x cos(y)> conservative? Why or why not? If F is conservative, then find its potential function.
Consider the following line integral of the conservative vector field: ZC(y2 sinz−z)dx + 2xy sinz dy...
Consider the following line integral of the conservative vector field: ZC(y2 sinz−z)dx + 2xy sinz dy + (xy2 cosz−x)dz where C is the contour given by r(t) = ht3,2t2 −1,πti, 0 ≤ t ≤ 1/2. a. [4] Find the potential f of the vector field satisfying the condition f(1,1,0) = 0. b. [5] Compute the line integral.
Suppose that the vector field F(x,y,z) has potential function f(x,y,z) = y2+ 3xz and C is...
Suppose that the vector field F(x,y,z) has potential function f(x,y,z) = y2+ 3xz and C is a path from (1,1,−1) to (0,5,π). Compute ∫CF·dr.
The function f(x, y) = x^−2 y^3 is a potential for a vector field F. Use...
The function f(x, y) = x^−2 y^3 is a potential for a vector field F. Use this to evaluate ∫ C F · dr where C is a curve from (1, 1) to (2, 2).
(a) Is the vector field F = <e^(−x) cos y, e^(−x) sin y> conservative? (b) If...
(a) Is the vector field F = <e^(−x) cos y, e^(−x) sin y> conservative? (b) If so, find the associated potential function φ. (c) Evaluate Integral C F*dr, where C is the straight line path from (0, 0) to (2π, 2π). (d) Write the expression for the line integral as a single integral without using the fundamental theorem of calculus.
a. Is F(x,y,z)= <(e^z)siny,(e^z)cosx,(e^x)siny> a conservative vector field? Justify. b. Is F incompressible? Explain. Is it...
a. Is F(x,y,z)= <(e^z)siny,(e^z)cosx,(e^x)siny> a conservative vector field? Justify. b. Is F incompressible? Explain. Is it irrotational? Explain. c. The vector field F(x,y,z)= < 6xy^2+e^z, 6yx^2 +zcos(y),sin(y)xe^z > is conservative. Find the potential function f. That is, the function f such that ▽f=F. Use a process.
Determine whether or not F is a conservative vector field. If it is, find a function...
Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇f. (If the vector field is not conservative, enter DNE.) F(x, y) = (y2 − 8x)i + 2xyj
Determine whether or not F is a conservative vector field. If it is, find a function...
Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇f. (If the vector field is not conservative, enter DNE.) F(x, y) = (y2 − 8x)i + 2xyj
Determine whether or not the vector field is conservative. If it is conservative, find a function...
Determine whether or not the vector field is conservative. If it is conservative, find a function f such that F = ∇f. (If the vector field is not conservative, enter DNE.) F(x, y, z) = 8xyi + (4x2 + 10yz)j + 5y2k Find: f(x, y, z) =
For the following vector fields F , decide whether it is conservative or not by computing...
For the following vector fields F , decide whether it is conservative or not by computing curl F . Type in a potential function f (that is, ∇f=F∇f=F). If it is not conservative, type N. F(x,y,z)=−2x2i+3y2j+8z2k