Question

For what values of a (if any) does the boundary value problem x'' + ax' =...

For what values of a (if any) does the boundary value problem
x'' + ax' = 0, x(0) = 0, x(π) = 0
have nontrivial (i.e. nonzero) solutions

Hint: In order to solve, divide the problem into three cases
1. If a > 0. In this case let a = b^2. 2. If a < 0. In this case let a = −b^2. 3. If a = 0.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For what values of a (if any) does the boundary value problem x'' + ax =...
For what values of a (if any) does the boundary value problem x'' + ax = 0, x(0) = 0, x(π) = 0 have nontrivial (i.e. nonzero) solutions Hint: In order to solve, divide the problem into three cases 1. If a > 0. In this case let a = b^2. 2. If a < 0. In this case let a = −b^2. 3. If a = 0.
Solve the given boundary-value problem. y'' − 2y' + 2y = 2x − 2,   y(0) =...
Solve the given boundary-value problem. y'' − 2y' + 2y = 2x − 2,   y(0) = 0, y(π) = π
Find all eigenvalues and corresponding eigenfunctions for the following boundary value problem (x^2)y'' + λy =...
Find all eigenvalues and corresponding eigenfunctions for the following boundary value problem (x^2)y'' + λy = 0, (1 < x < 2), y(1) = 0 = y(2) and in particular the three cases μ < 1/2, μ = 1/2, and μ > 1/2 associated with the sign and vanishing of the discriminant of the characteristic equation
Find u(x,y) harmonic in S with given boundary values: S = {(x,y): 1 < y <...
Find u(x,y) harmonic in S with given boundary values: S = {(x,y): 1 < y < 3} , u(x,y) = 5 (if y=1) and = 7 (when y=3) I have this problem to solve, and I'm not sure where to start. Any help would be appreciated. Thanks!
Solve the given initial-value problem. (Enter the first three nonzero terms of the solution.) (x +...
Solve the given initial-value problem. (Enter the first three nonzero terms of the solution.) (x + 2)y'' + 3y = 0,  y(0) = 0,  y'(0) = 1
solve the boundary value problem: y''(x)+y(x)=e^x for 0<x<pi with y(0)=0 and y(pi)+y'(pi)=0. please show all steps.
solve the boundary value problem: y''(x)+y(x)=e^x for 0<x<pi with y(0)=0 and y(pi)+y'(pi)=0. please show all steps.
Given: The following boundary value problem:    y"+ lamda*y = 0;                0 < x...
Given: The following boundary value problem:    y"+ lamda*y = 0;                0 < x < 2;         y(0) = 0;          y’(2) = 0 Find corresponding eigenvalues, (lamda)n and normalized eigenfunctions yn Expand the function f(x) = x, in terms of the eigen functions obtained in (i)
1)Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy...
1)Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy = 0,   y(1) = 1. Let af/ax = (x + y)2 = x2 + 2xy + y2. Integrate each term of this partial derivative with respect to x, letting h(y) be an unknown function in y. f(x, y) =   + h(y) Solve the given initial-value problem. 2) Solve the given initial-value problem. (6y + 2t − 3) dt + (8y + 6t − 1) dy...
1)  Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy...
1)  Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy = 0,   y(1) = 1 Let af/ax = (x + y)2 = x2 + 2xy + y2. Integrate each term of this partial derivative with respect to x, letting h(y) be an unknown function in y. f(x, y) =    + h(y) Find the derivative of h(y). h′(y) = Solve the given initial-value problem. 2) Solve the given initial-value problem. (6y + 2t − 3) dt...
Let a, c be positive constants and assume that a/ 2πc is a positive integer. Consider...
Let a, c be positive constants and assume that a/ 2πc is a positive integer. Consider the equation Utt + aut = c^2Uxx , which represents a damped version of the wave equation (telegrapher’s equation). Assuming Dirichlet boundary conditions u(0, t) = u(1, t) = 0, on the infinite strip 0 ≤ x ≤ 1, t ≥ 0, with initial conditions u(x, 0) = f(x), ut(x, 0) = 0, complete the following: (a) Find all separable solutions (of the form...