Question

solve the boundary value problem: y''(x)+y(x)=e^x for 0<x<pi with y(0)=0 and y(pi)+y'(pi)=0. please show all steps.

solve the boundary value problem:
y''(x)+y(x)=e^x for 0<x<pi with y(0)=0 and y(pi)+y'(pi)=0.
please show all steps.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
find the eigenvalues and eigenfunctions for the given boundary-value problem. y'' + (lambda)y = 0, y(-pi)=0,...
find the eigenvalues and eigenfunctions for the given boundary-value problem. y'' + (lambda)y = 0, y(-pi)=0, y(pi)=0 Please explain where alpha = (2n+1)/2 comes from in the lambda>0 case. Thank you!!
Solve the initial value problem. Explain and show all steps. y'' - 4y' +4y = 0...
Solve the initial value problem. Explain and show all steps. y'' - 4y' +4y = 0 where y(0) = 1 and y'(0) = 2
Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x...
Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x for 0≤x≤ π. if you like, you can use/cite the solution of Fourier sine series of sin^2(x) on [0,pi] = 1/4-(1/4)cos(2x) please show all steps and work clearly so I can follow your logic and learn to solve similar ones myself.
Please show all steps, thanks!! a) Solve the BVP: y" + 2y' + y = 0,...
Please show all steps, thanks!! a) Solve the BVP: y" + 2y' + y = 0, y(0) = 1, y(1) =3 b) Prove the superposition principle: suppose that the functions y1(x) and y2(x) satisfy the homogenous equation of order two: ay'' + by' + cy = 0. Show that the following combinations also satisfy it: constant multiple m(x) = k*y1(x) sum s(x) = y1(x) + y2(x)
Use Laplace Transforms to solve the initial value problem for y(t). Show all steps. Circle your...
Use Laplace Transforms to solve the initial value problem for y(t). Show all steps. Circle your answer. y''+ 6y' + 9y = 90t^(4)e^(−3t) y(0)= -2 , y'(0)= 6
Solve the initial value problem. d^2y/dx^2= -3 csc^2 x; y' (pi/4)=0; y(pi/2)=0 The solution is y=____.
Solve the initial value problem. d^2y/dx^2= -3 csc^2 x; y' (pi/4)=0; y(pi/2)=0 The solution is y=____.
Determine the solution of the following initial boundary-value problem Uxx=4Utt 0<x<Pi t>0 U(x,0)=sinx 0<=x<Pi Ut(x,0)=x 0<=x<Pi...
Determine the solution of the following initial boundary-value problem Uxx=4Utt 0<x<Pi t>0 U(x,0)=sinx 0<=x<Pi Ut(x,0)=x 0<=x<Pi U(0,t)=0 t>=0 U(pi,t)=0 t>=0
Solve the initial value problem using Laplace transforms. Explain and show all steps. y'' + 9y...
Solve the initial value problem using Laplace transforms. Explain and show all steps. y'' + 9y = 3δ(t - π) where y(0) = 3 and y'(0) = 0
Solve the 1st order initial value problem: 1+(x/y+cosy)dy/dx=0, y(pi/2)=0
Solve the 1st order initial value problem: 1+(x/y+cosy)dy/dx=0, y(pi/2)=0
Solve the initial-value problem. x2y' + 2xy = ln(x),    y(1) = 7. Please show all work neatly,...
Solve the initial-value problem. x2y' + 2xy = ln(x),    y(1) = 7. Please show all work neatly, line by line, and please justify steps so that I can learn. Thank you!
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT