Question

Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x...

Solve the following initial/boundary value problem:

∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π,

u(t,0)=u(t,π)=0 for t>0,

u(0,x)=sin^2x for 0≤x≤ π.

if you like, you can use/cite the solution of Fourier sine series of sin^2(x) on [0,pi] = 1/4-(1/4)cos(2x)

please show all steps and work clearly so I can follow your logic and learn to solve similar ones myself.

Homework Answers

Answer #1

Doubt in any step then comment below.. i will explain you.

.

please thumbs up for this solution..thanks..

.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the BVP for the wave equation ∂^2u/∂t^2(x,t)=∂^2u/∂x^2(x,t),  0 < x < pi, t > 0 u(0,t)=0,...
Solve the BVP for the wave equation ∂^2u/∂t^2(x,t)=∂^2u/∂x^2(x,t),  0 < x < pi, t > 0 u(0,t)=0, u(pi,t)=0,  ? > 0, u(0,t)=0,  u(pi,t)=0,  t>0, u(x,0)= sin(x)cos(x), ut(x,0)=sin(x), 0 < x < pi
Use the eigenfunction expansion to solve utt = uxx + e −t sin(3x), 0 < x...
Use the eigenfunction expansion to solve utt = uxx + e −t sin(3x), 0 < x < π u(x, 0) = sin(x), ut(x, 0) = 0 u(0, t) = 1, u(π, t) = 0. Your solution should be in the form of Fourier series. Write down the formulas that determine the coefficients in the Fourier series but do not evaluate the integrals
Solve the below boundary value equation 1. Ut=2uxx o<x<pi 0<t 2. u(0,t) = ux(pi,t) 0<t 3....
Solve the below boundary value equation 1. Ut=2uxx o<x<pi 0<t 2. u(0,t) = ux(pi,t) 0<t 3. u(x,0) = 1-2x 0<x<pi
Solve the initial value problem 2(sin(t)dydt+cos(t)y)=cos(t)sin^3(t) for 0<t<π0<t<π and y(π/2)=13.y(π/2)=13. Put the problem in standard form....
Solve the initial value problem 2(sin(t)dydt+cos(t)y)=cos(t)sin^3(t) for 0<t<π0<t<π and y(π/2)=13.y(π/2)=13. Put the problem in standard form. Then find the integrating factor, ρ(t)= and finally find y(t)=
Solve ut=uxx, 0 < x < 3, given the following initial and boundary conditions: - u(0,t)...
Solve ut=uxx, 0 < x < 3, given the following initial and boundary conditions: - u(0,t) = u(3,t) = 1 - u(x,0) = 0 Please write clearly and explain your reasoning.
Solve the following inhomogeneous wave problem for a vibrating string of length 1 (0 ≤ x...
Solve the following inhomogeneous wave problem for a vibrating string of length 1 (0 ≤ x ≤ 1): ∂^2u/ ∂t^2 = 1/2 * ∂^2u/∂x^2 − x. The initial conditions are u(x, 0) = cos(πx/2) + 1/3x^3 & ∂u/∂t (x, 0) = 0 boundary conditions are ∂u/∂x(0, t) = 0  & u(1, t) = 1/3.
Determine the solution of the following initial boundary-value problem Uxx=4Utt 0<x<Pi t>0 U(x,0)=sinx 0<=x<Pi Ut(x,0)=x 0<=x<Pi...
Determine the solution of the following initial boundary-value problem Uxx=4Utt 0<x<Pi t>0 U(x,0)=sinx 0<=x<Pi Ut(x,0)=x 0<=x<Pi U(0,t)=0 t>=0 U(pi,t)=0 t>=0
Solve the given boundary-value problem. y'' − 2y' + 2y = 2x − 2,   y(0) =...
Solve the given boundary-value problem. y'' − 2y' + 2y = 2x − 2,   y(0) = 0, y(π) = π
Solve the Initial Value Problem (y2 cos(x) − 3x2y − 2x) dx + (2y sin(x) −...
Solve the Initial Value Problem (y2 cos(x) − 3x2y − 2x) dx + (2y sin(x) − x3 + ln(y)) dy = 0,    y(0) = e
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinxcosx, ut(x,0) = x(pi - x)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT