Question

A function f : R → R is called additive if f(x + y) = f(x)...

A function f : R → R is called additive if f(x + y) = f(x) + f(y) for all x, y ∈ R. Is the set of all additive functions a subspace of F(R, R)? Give a proof of counter example.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let W be the set of all [x y z}^t in R^3 such that xyz...
1. Let W be the set of all [x y z}^t in R^3 such that xyz = 0. Is W a subspace of R^3? 2. Let C^0 (R) denote the space of all continuous real-valued functions f(x) of x in R. Let W be the set of all continuous functions f(x) such that f(1) = 0. Is W a subspace of C^0(R)?
let F : R to R be a continuous function a) prove that the set {x...
let F : R to R be a continuous function a) prove that the set {x in R:, f(x)>4} is open b) prove the set {f(x), 1<x<=5} is connected c) give an example of a function F that {x in r, f(x)>4} is disconnected
Let f : R → R be a function satisfying |f(x) − f(y)| ≤ 3|x −...
Let f : R → R be a function satisfying |f(x) − f(y)| ≤ 3|x − y|^{1/2} for all x, y ∈ R. Apply E − δ definition to show that f is uniformly continuous in R.
1)T F: All (x, y, z) ∈ R 3 with x = y + z is...
1)T F: All (x, y, z) ∈ R 3 with x = y + z is a subspace of R 3 9 2) T F: All (x, y, z) ∈ R 3 with x + z = 2018 is a subspace of R 3 3) T F: All 2 × 2 symmetric matrices is a subspace of M22. (Here M22 is the vector space of all 2 × 2 matrices.) 4) T F: All polynomials of degree exactly 3 is...
(1) (5 pts) Consider the function f : + ×+ → given by f(x, y) =...
(1) (5 pts) Consider the function f : + ×+ → given by f(x, y) = x! y!(x−y)! . Where and x and y are positive integers h Hint: this is the combination formula, x y i (a) What types of relationships are generated by this function, please justify your answers using examples or counter examples. (b) How many combinations of 2 pairs can be generated from a power of R, assuming there are 4 element in set R .
A function f”R n × R m → R is bilinear if for all x, y...
A function f”R n × R m → R is bilinear if for all x, y ∈ R n and all w, z ∈ R m, and all a ∈ R: • f(x + ay, z) = f(x, z) + af(y, z) • f(x, w + az) = f(x, w) + af(x, z) (a) Prove that if f is bilinear, then (0.1) lim (h,k)→(0,0) |f(h, k)| |(h, k)| = 0. (b) Prove that Df(a, b) · (h, k) = f(a,...
Consider the function f : R → R defined by f(x) = ( 5 + sin...
Consider the function f : R → R defined by f(x) = ( 5 + sin x if x < 0, x + cos x + 4 if x ≥ 0. Show that the function f is differentiable for all x ∈ R. Compute the derivative f' . Show that f ' is continuous at x = 0. Show that f ' is not differentiable at x = 0. (In this question you may assume that all polynomial and trigonometric...
Problem 2. Let F : R → R be any function (not necessarily measurable!). Prove that...
Problem 2. Let F : R → R be any function (not necessarily measurable!). Prove that the set of points x ∈ R such that F(y) ≤ F(x) ≤ F(z) for all y ≤ x and z ≥ x is Borel set.
Let (X, A) be a measurable space and f : X → R a function. (a)...
Let (X, A) be a measurable space and f : X → R a function. (a) Show that the functions f 2 and |f| are measurable whenever f is measurable. (b) Prove or give a counterexample to the converse statement in each case.
Evaluate the double integral for the function f(x, y) and the given region R. f(x, y)...
Evaluate the double integral for the function f(x, y) and the given region R. f(x, y) = 5y + 5x; R is the rectangle defined by 5 ≤ x ≤ 6 and 2 ≤ y ≤ 4