Question

Consider the function f : R → R defined by f(x) = ( 5 + sin...

Consider the function f : R → R defined by f(x) = ( 5 + sin x if x < 0, x + cos x + 4 if x ≥ 0. Show that the function f is differentiable for all x ∈ R. Compute the derivative f' . Show that f ' is continuous at x = 0. Show that f ' is not differentiable at x = 0. (In this question you may assume that all polynomial and trigonometric functions are differentiable anywhere they are defined, with their well-known derivatives.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculus, Taylor series Consider the function f(x) = sin(x) x . 1. Compute limx→0 f(x) using...
Calculus, Taylor series Consider the function f(x) = sin(x) x . 1. Compute limx→0 f(x) using l’Hˆopital’s rule. 2. Use Taylor’s remainder theorem to get the same result: (a) Write down P1(x), the first-order Taylor polynomial for sin(x) centered at a = 0. (b) Write down an upper bound on the absolute value of the remainder R1(x) = sin(x) − P1(x), using your knowledge about the derivatives of sin(x). (c) Express f(x) as f(x) = P1(x) x + R1(x) x...
We know that any continuous function f : [a, b] → R is uniformly continuous on...
We know that any continuous function f : [a, b] → R is uniformly continuous on the finite closed interval [a, b]. (i) What is the definition of f being uniformly continuous on its domain? (This definition is meaningful for functions f : J → R defined on any interval J ⊂ R.) (ii) Given a differentiable function f : R → R, prove that if the derivative f ′ is a bounded function on R, then f is uniformly...
Prove that the function f : R \ {−1} → R defined by f(x) = (1−x)...
Prove that the function f : R \ {−1} → R defined by f(x) = (1−x) /(1+x) is uniformly continuous on (0, ∞) but not uniformly continuous on (−1, 1).
Consider the function on the interval (0, 2π). f(x) = sin(x) cos(x) + 4. (A) Find...
Consider the function on the interval (0, 2π). f(x) = sin(x) cos(x) + 4. (A) Find the open interval(s) on which the function is increasing or decreasing. (Enter your answers using interval notation.) (B) Apply the First Derivative Test to identify all relative extrema.
] Consider the function f : R 2 → R defined by f(x, y) = x...
] Consider the function f : R 2 → R defined by f(x, y) = x ln(x + 2y). (a) Find the gradient of f(x, y) at the point P(e/3, e/3). (b) Use the gradient to find the directional derivative of f at P(e/3, e/3) in the direction of the vector ~u = h−4, 3i. (c) Find a unit vector (based at P) pointing in the direction in which f increases most rapidly at P.
If f is a continuous, positive function defined on the interval (0, 1] such that limx→0+...
If f is a continuous, positive function defined on the interval (0, 1] such that limx→0+ = ∞ we have seen how to make sense of the area of the infinite region bounded by the graph of f, the x-axis and the vertical lines x = 0 and x = 1 with the definition of the improper integral. Consider the function f(x) = x sin(1/x) defined on (0, 1] and note that f is not defined at 0. • Would...
Consider the piecewise defined function f(x) = xa− xb if 0<x<1. and f(x) = lnxc if...
Consider the piecewise defined function f(x) = xa− xb if 0<x<1. and f(x) = lnxc if x≥1. where a, b, c are positive numbers chosen in such a way that f(x) is differentiable for all 0<x<∞. What can be said about a, b,  and c?
Let f : R → R be defined by f(x) = x^3 + 3x, for all...
Let f : R → R be defined by f(x) = x^3 + 3x, for all x. (i) Prove that if y > 0, then there is a solution x to the equation f(x) = y, for some x > 0. Conclude that f(R) = R. (ii) Prove that the function f : R → R is strictly monotone. (iii) By (i)–(ii), denote the inverse function (f ^−1)' : R → R. Explain why the derivative of the inverse function,...
For the given function: f [0; 3]→R is continuous, and all of its values are rational...
For the given function: f [0; 3]→R is continuous, and all of its values are rational numbers. It is also known that f(0) = 1. Can you find f(3)?Justification b) Let [x] denote the smallest integer, not larger than x. For instance,[2.65] = 2 = [2], [−1.5] =−2. Caution: [x] is not equal to |x|! Find the points at which the function f : R→R. f(x) = cos([−x] + [x]) has or respectively, does not have a derivative.
4a). Let g be continuous at x = 0. Show that f(x) = xg(x) is differentiable...
4a). Let g be continuous at x = 0. Show that f(x) = xg(x) is differentiable at x = 0 and f'(0) = g(0). 4b). Let f : (a,b) to R and p in (a,b). You may assume that f is differentiable on (a,b) and f ' is continuous at p. Show that f'(p) > 0 then there is delta > 0, such that f is strictly increasing on D(p,delta). Conclude that on D(p,delta) the function f has a differentiable...