Question

let F : R to R be a continuous function a) prove that the set {x...

let F : R to R be a continuous function

a) prove that the set {x in R:, f(x)>4} is open

b) prove the set {f(x), 1<x<=5} is connected

c) give an example of a function F that {x in r, f(x)>4} is disconnected

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove or provide a counterexample Let f:R→R be a function. If f is T_U−T_C continuous, then...
Prove or provide a counterexample Let f:R→R be a function. If f is T_U−T_C continuous, then f is T_C−T_U continuous. T_U is the usual topology and T_C is the open half-line topology
Let f : [a,b] → R be a continuous function such that f(x) doesn't equal 0...
Let f : [a,b] → R be a continuous function such that f(x) doesn't equal 0 for every x ∈ [a,b]. 1) Show that either f(x) > 0 for every x ∈ [a,b] or f(x) < 0 for every x ∈ [a,b]. 2) Assume that f(x) > 0 for every x ∈ [a,b] and prove that there exists ε > 0 such that f(x) ≥ ε for all x ∈ [a,b].
Prove that the function f : R \ {−1} → R defined by f(x) = (1−x)...
Prove that the function f : R \ {−1} → R defined by f(x) = (1−x) /(1+x) is uniformly continuous on (0, ∞) but not uniformly continuous on (−1, 1).
Let X be a set and A a σ-algebra of subsets of X. (a) A function...
Let X be a set and A a σ-algebra of subsets of X. (a) A function f : X → R is measurable if the set {x ∈ X : f(x) > λ} belongs to A for every real number λ. Show that this holds if and only if the set {x ∈ X : f(x) ≥ λ} belongs to A for every λ ∈ R. (b) Let f : X → R be a function. (i) Show that if...
Prove or give a counter example: If f is continuous on R and differentiable on R...
Prove or give a counter example: If f is continuous on R and differentiable on R ∖ { 0 } with lim x → 0 f ′ ( x ) = L , then f is differentiable on R .
Problem 2. Let F : R → R be any function (not necessarily measurable!). Prove that...
Problem 2. Let F : R → R be any function (not necessarily measurable!). Prove that the set of points x ∈ R such that F(y) ≤ F(x) ≤ F(z) for all y ≤ x and z ≥ x is Borel set.
If f is continuous on ( a , b ) and f ( x ) ≠...
If f is continuous on ( a , b ) and f ( x ) ≠ 0 for all x in ( a , b ), then either f ( x ) > ______ for all x in ( a , b ) or f ( x ) < _________ for all x in ( a , b ). A function f is said to be continuous on the _______ at x = c if lim x → c +...
Let A be open and nonempty and f : A → R. Prove that f is...
Let A be open and nonempty and f : A → R. Prove that f is continuous at a if and only if f is both upper and lower semicontinuous at a.
Let (X, A) be a measurable space and f : X → R a function. (a)...
Let (X, A) be a measurable space and f : X → R a function. (a) Show that the functions f 2 and |f| are measurable whenever f is measurable. (b) Prove or give a counterexample to the converse statement in each case.
Prove the following theorem: Theorem. Let a ∈ R and let f be a function defined...
Prove the following theorem: Theorem. Let a ∈ R and let f be a function defined on an interval centred at a. IF f is continuous at a and f(a) > 0 THEN f is strictly positive on some interval centred at a.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT