Question

(1) (5 pts) Consider the function f : + ×+ → given by f(x, y) =...

(1) (5 pts) Consider the function f : + ×+ → given by f(x, y) = x! y!(x−y)! . Where and x and y are positive integers h Hint: this is the combination formula, x y i (a) What types of relationships are generated by this function, please justify your answers using examples or counter examples. (b) How many combinations of 2 pairs can be generated from a power of R, assuming there are 4 element in set R .

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A function f : R → R is called additive if f(x + y) = f(x)...
A function f : R → R is called additive if f(x + y) = f(x) + f(y) for all x, y ∈ R. Is the set of all additive functions a subspace of F(R, R)? Give a proof of counter example.
1. Consider the function f(x) = x 3 + 7x + 2. (a) (10 pts) Show...
1. Consider the function f(x) = x 3 + 7x + 2. (a) (10 pts) Show that f has an inverse. (Hint: Is f increasing?) (b) (10 pts) Determine the slope of the tangent line to f −1 at (10, 1). (Hint: The derivative of the inverse function can be found using the chain rule.)
] Consider the function f : R 2 → R defined by f(x, y) = x...
] Consider the function f : R 2 → R defined by f(x, y) = x ln(x + 2y). (a) Find the gradient of f(x, y) at the point P(e/3, e/3). (b) Use the gradient to find the directional derivative of f at P(e/3, e/3) in the direction of the vector ~u = h−4, 3i. (c) Find a unit vector (based at P) pointing in the direction in which f increases most rapidly at P.
s] Consider the function f : R 2 → R defined by f(x, y) = x...
s] Consider the function f : R 2 → R defined by f(x, y) = x ln(x + 2y). (a) Find the gradient of f(x, y) at the point P(e/3, e/3). (b) Use the gradient to find the directional derivative of f at P(e/3, e/3) in the direction of the vector ~u = h−4, 3i. (c) Find a unit vector (based at P) pointing in the direction in which f increases most rapidly at P.
Consider the function f : R 2 → R defined by f(x, y) = 4 +...
Consider the function f : R 2 → R defined by f(x, y) = 4 + x 3 + y 3 − 3xy. (a)Compute the directional derivative of f at the point (a, b) = ( 1 2 , 1 2 ), in the direction u = ( √ 1 2 , − √ 1 2 ). At the point ( 1 2 , 1 2 ), is u the direction of steepest ascent, steepest descent, or neither? Justify your...
Consider the function and the value of a. f(x) = -5/x-1, a=7 (a) Use mtan =...
Consider the function and the value of a. f(x) = -5/x-1, a=7 (a) Use mtan = lim h→0 , f(a + h) − f(a) h to find the slope of the tangent line mtan = f '(a). mtan = (b) Find the equation of the tangent line to f at x = a. (Let x be the independent variable and y be the dependent variable.)
Consider the function f:R?R given by f(x,y)=(2-y,2-x). (b) Draw the triangle with vertices A = (1,...
Consider the function f:R?R given by f(x,y)=(2-y,2-x). (b) Draw the triangle with vertices A = (1, 2), B = (3, 1), C = (3, 2), and the triangle with vertices f(A),f(B),f(C). (c) Is f a rotation, a translation, or a glide reflection? Explain your answer.
Evaluate the double integral for the function f(x, y) and the given region R. f(x, y)...
Evaluate the double integral for the function f(x, y) and the given region R. f(x, y) = 5y + 5x; R is the rectangle defined by 5 ≤ x ≤ 6 and 2 ≤ y ≤ 4
Evaluate the double integral for the function f(x, y) and the given region R. f(x, y)...
Evaluate the double integral for the function f(x, y) and the given region R. f(x, y) = 5y + 4x; R is the rectangle defined by 5 ≤ x ≤ 6 and 1 ≤ y ≤ 3
Let X be the set {1, 2, 3}. a)For each function f in the set of...
Let X be the set {1, 2, 3}. a)For each function f in the set of functions from X to X, consider the relation that is the symmetric closure of the function f'. Let us call the set of these symmetric closures Y. List at least two elements of Y. b) Suppose R is some partial order on X. What is the smallest possible cardinality R could have? What is the largest?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT