Question

An open-top box has a square bottom and is made to have a volume of 50in^3....

An open-top box has a square bottom and is made to have a volume of 50in^3. The material for the base costs $10 a sq in and the material for the sides is $6 a sq in.

What dimensions minimize cost

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A box with square base and open top is to have a volume of 10?3 ....
A box with square base and open top is to have a volume of 10?3 . Material for the base costs $10 per square meter and material for the sides costs $8 per square meter. Determine the dimensions of the cheapest such container. Use the first or second derivative test to verify that your answer is a minimum.
There is an open-topped box that will have 5 sides.. The box to contain a volume...
There is an open-topped box that will have 5 sides.. The box to contain a volume of 6 ft3 and to have a square base. The base needs a stronger material which costs $3 per ft2. For the other sides I’ll use a material that costs $2 per ft2. What are the dimensions of the box that minimize the cost?
A box with a square base and an open top must have a volume of 864...
A box with a square base and an open top must have a volume of 864 cm^3. Find the dimensions of the box that minimize the amount of material used.  
A rectangular storage container with an open top and a square base is to be constructed....
A rectangular storage container with an open top and a square base is to be constructed. Material for the bottom costs $6/sq-ft, and material for the sides costs $3/sq-ft. If a total of $72 is budgeted for material expenses, what are the dimensions of the container that holds the largest volume?
A company plans to manufacture a rectangular box with a square base, an open top, and...
A company plans to manufacture a rectangular box with a square base, an open top, and a volume of 404 cm3. The cost of the material for the base is 0.5 cents per square centimeter, and the cost of the material for the sides is 0.1 cents per square centimeter. Determine the dimensions of the box that will minimize the cost of manufacturing it. What is the minimum cost?
An open-topped box is to have a square base and a volume of 10 ?3. The...
An open-topped box is to have a square base and a volume of 10 ?3. The cost per square meter of material is $5 for the bottom and $2 for the four sides. Let ? be the length of the base of the box and ℎ be the height of the box. Let ? be the total cost of material required to make the box. a. Express ? as a function of ? and find its domain. b. Find the...
A rectangular box is to have a square base and a volume of 45 ft3. If...
A rectangular box is to have a square base and a volume of 45 ft3. If the material for the base costs 14 cents per square foot, material for the top costs 6 cents per square foot, and the material for the sides costs 6 cents per square foot, determine the dimensions of the square base (in feet) that minimize the total cost of materials used in constructing the rectangular box.
A closed box with a square base is to have a volume of 2000in2. The material...
A closed box with a square base is to have a volume of 2000in2. The material for the top and bottom of the box is to cost $6 per in2, and the material for the sides is to cost $3 per in2. If the cost of the material is to be the least, find the dimensions of the box. Prove/justify your answer.
A box with a square base and open top must have a volume of 202612 cm3....
A box with a square base and open top must have a volume of 202612 cm3. We wish to find the dimensions of the box that minimize the amount of material used. (Round your answer to the nearest tenthousandths if necessary.) Length = Width = Height =
A box with a square base and open top must have a volume of 296352 cm3....
A box with a square base and open top must have a volume of 296352 cm3. We wish to find the dimensions of the box that minimize the amount of material used. (Round your answer to the nearest tenthousandths if necessary.) Length = Width = Height =
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT