Question

The market index currently stands at 650 and has a volatility of 30 percent per annum....

The market index currently stands at 650 and has a volatility of 30 percent per annum. The risk- free rate of interest is 6 percent per annum and the index provides a divided yield of 3 percent per annum. Calculate the value of a three-month European put on that index with an exercise price of 650, using Merton’s index option pricing formula. (Show your interim results, such as d1, d2, N(d1) and N(d2))

Homework Answers

Answer #1

SEE THE IMAGE. ANY DOUBTS, FEEL FREE TO ASK. THUMBS UP PLEASE

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An index currently stands at 736 and has a volatility of 27% per annum. The risk-free...
An index currently stands at 736 and has a volatility of 27% per annum. The risk-free rate of interest is 5.25% per annum and the index provides a dividend yield of 3.65% per annum. Calculate the value of a five-month European put with an exercise price of 730.
A stock index currently stands at 300 and has a volatility of 20%. The risk-free interest...
A stock index currently stands at 300 and has a volatility of 20%. The risk-free interest rate is 8% and the dividend yield on the index is 3%. Use the Black-Scholes-Merton formula to calculate the price of a European call option with strike price 325 and the price of a European put option with strike price of 275. The options will expire in six months. What is the cost of the range forward created using options in Part (a)? Use...
A stock index currently has a value of 972. The risk-free rate is 4.60% per annum...
A stock index currently has a value of 972. The risk-free rate is 4.60% per annum and the dividend yield on the index is 2.40% per annum. A three-month European call option on the index with a strike price of 965 is currently priced at $14.17. Calculate the value of a put option with three-month remaining with a strike price of 965?
a stock index currently stands at 300 and has a volatility of 20% per year. the...
a stock index currently stands at 300 and has a volatility of 20% per year. the continuously compounded risk-free interest rate is 3% per year and the dividend yield on the index is 8%. a trader used a two-step binomial tree to value a six-month american call option on the index. what is the risk-neutral probability that the stock price moves up in 3 months?
A stock index is currently 1,500. ITs volatility is 18% per annum. The continuously compounded risk-free...
A stock index is currently 1,500. ITs volatility is 18% per annum. The continuously compounded risk-free rate is 4% per annum for all maturities. (1) Calculate values for u,d, and p when a six-month time step is used. (2) Calculate the value a 12-month American put option with a strike price of 1,480 given by a two-step binomial tree.
A stock index is currently 1,500. Its volatility is 18%. The risk-free rate is 4% per...
A stock index is currently 1,500. Its volatility is 18%. The risk-free rate is 4% per annum for all maturities and the dividend yield on the index is 2.5% (both continuously compounded). Calculate values for u, d, and p when a 6-month time step is used. What is value of a 12-month European put option with a strike price of 1,480 given by a two-step binomial tree? In the question above, what is the value of a 12-month American put...
A stock index level is currently 2,000. Its volatility is 25%. The risk-free rate is 4%...
A stock index level is currently 2,000. Its volatility is 25%. The risk-free rate is 4% per annum (continuously compounded) for all maturities and the dividend yield on the index is 2%. Using the Black-Scholes model: a) Derive the value a 6-month European put option with a strike price of 2020. b) Derive the position in the index that is needed today to hedge a long position in the put option. Assume that the option is written on 250 times...
q 19 A non-dividend paying stock is currently trading at $60 and its volatility is 30%...
q 19 A non-dividend paying stock is currently trading at $60 and its volatility is 30% per annum. Risk free rate is 12% per annum. Consider a European put option with a strike price of $59 that will expire in three months. What is the price of this put option based on Black-Scholes model? (Enter your answer in two decimals without $ sign)
Current stock price is $150; volatility is 20% per annum. An at-the-money European put option on...
Current stock price is $150; volatility is 20% per annum. An at-the-money European put option on the stock expires in 3 months. Risk free rate is 5% per annum, continuously compounded. There is no dividend expected over the next 3 months. Use a 3-step CRR model to price this option.
Shares in ABC plc are currently trading at $5 per share. The share has volatility of...
Shares in ABC plc are currently trading at $5 per share. The share has volatility of 22% per annum and the risk-free rate of interest is 1.5% per annum. According to the Black-Scholes-Merton (1973) approach, what is the delta of an at-the-money, 3-month European put option written on one ABC share. (DETAILED WORKINGS PLEASE) a. -0.5355 b. -0.464505 c. 0.535495 d. 0.508341 e. -0.49166
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT