Question

A stock index currently has a value of 972. The risk-free rate is 4.60% per annum...

A stock index currently has a value of 972. The risk-free rate is 4.60% per annum and the dividend yield on the index is 2.40% per annum. A three-month European call option on the index with a strike price of 965 is currently priced at $14.17. Calculate the value of a put option with three-month remaining with a strike price of 965?

Homework Answers

Answer #1

Information given in the problem

Stock index price(S) = 972

Risk-free rate per annum (r) = 4.6%

Divivdend yield per annum (q) = 2.4%

Time to maturity of call option (T) = 3months

Strike price of call option (K) = 965

Price of call option (C) = 14.17

To calculate price of put option having 3 months to maturity and strike price at 965 , use put-call parity equation

S * e^(-q*t) + p = c +K * e^(-r*t)

972 * e^(-(2.4/100)*(3/12)) + p = 14.17 + 965 *e^(-(4.6/100)*(3/12))

966.185 + p =14.17+ 953.9661

p = 14.17 +953.9661 -966.185

p = 1.95

The price of put option is 1.95

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An index currently stands at 736 and has a volatility of 27% per annum. The risk-free...
An index currently stands at 736 and has a volatility of 27% per annum. The risk-free rate of interest is 5.25% per annum and the index provides a dividend yield of 3.65% per annum. Calculate the value of a five-month European put with an exercise price of 730.
A stock index is currently 1,500. Its volatility is 18%. The risk-free rate is 4% per...
A stock index is currently 1,500. Its volatility is 18%. The risk-free rate is 4% per annum for all maturities and the dividend yield on the index is 2.5% (both continuously compounded). Calculate values for u, d, and p when a 6-month time step is used. What is value of a 12-month European put option with a strike price of 1,480 given by a two-step binomial tree? In the question above, what is the value of a 12-month American put...
A stock index currently stands at 300 and has a volatility of 20%. The risk-free interest...
A stock index currently stands at 300 and has a volatility of 20%. The risk-free interest rate is 8% and the dividend yield on the index is 3%. Use the Black-Scholes-Merton formula to calculate the price of a European call option with strike price 325 and the price of a European put option with strike price of 275. The options will expire in six months. What is the cost of the range forward created using options in Part (a)? Use...
A stock index level is currently 2,000. Its volatility is 25%. The risk-free rate is 4%...
A stock index level is currently 2,000. Its volatility is 25%. The risk-free rate is 4% per annum (continuously compounded) for all maturities and the dividend yield on the index is 2%. Using the Black-Scholes model: a) Derive the value a 6-month European put option with a strike price of 2020. b) Derive the position in the index that is needed today to hedge a long position in the put option. Assume that the option is written on 250 times...
The value of the S&P500 stock index is 1,000. The risk-free interest rate is 3% per...
The value of the S&P500 stock index is 1,000. The risk-free interest rate is 3% per annum with continuous compounding. The dividend yield on the S&P 500 is 1%, and the volatility of the index is 20% per annum. Find the delta on a 6 months put option with strike price 950. Interpret your result.
A stock index is currently 1,500. ITs volatility is 18% per annum. The continuously compounded risk-free...
A stock index is currently 1,500. ITs volatility is 18% per annum. The continuously compounded risk-free rate is 4% per annum for all maturities. (1) Calculate values for u,d, and p when a six-month time step is used. (2) Calculate the value a 12-month American put option with a strike price of 1,480 given by a two-step binomial tree.
The value of the S&P500 stock index is 1,000. The risk-free interest rate is 3% per...
The value of the S&P500 stock index is 1,000. The risk-free interest rate is 3% per annum with continuous compounding. The dividend yield on the S&P 500 is 1%, and the volatility of the index is 20% per annum. Find the delta on a 6 months put option with strike price 950. Interpret your result. Please write down the formula, the process and the result
The market index currently stands at 650 and has a volatility of 30 percent per annum....
The market index currently stands at 650 and has a volatility of 30 percent per annum. The risk- free rate of interest is 6 percent per annum and the index provides a divided yield of 3 percent per annum. Calculate the value of a three-month European put on that index with an exercise price of 650, using Merton’s index option pricing formula. (Show your interim results, such as d1, d2, N(d1) and N(d2))
The Amazon stock price is currently $200. The quarterly compounding risk-free interest rate is 4% per...
The Amazon stock price is currently $200. The quarterly compounding risk-free interest rate is 4% per annum. Amazon stock will have an expected return of 10% with volatility of 25% per year. What is the value of a 3-month European call option on the Amazon stock with a strike price of $200?
The price of a non-dividend paying stock is $19 and the price of a three-month European...
The price of a non-dividend paying stock is $19 and the price of a three-month European put option on the stock with a strike price of $20 is $1.80. The risk-free rate is 4% per annum. What is the price of a three-month European call option with a strike price of $20? Is the call option in the money or out of the money? Explain Is the put option in the money or out the money? Explain
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT