Question

a stock index currently stands at 300 and has a volatility of 20% per year. the...

a stock index currently stands at 300 and has a volatility of 20% per year. the continuously compounded risk-free interest rate is 3% per year and the dividend yield on the index is 8%. a trader used a two-step binomial tree to value a six-month american call option on the index. what is the risk-neutral probability that the stock price moves up in 3 months?

Homework Answers

Answer #1

Solution:

Given that dividend yield, d = 0.08, Risk-free interest rate, r = 0.03, Time, t = 3/12, Stock price, S = 300, volatility = 20%

Since the volatility is 20%, the given up factor, u = 1.20 and the down factor, d = 0.80

The risk neutral probability is

p* = [e^(r - d)t - d]/(u - d)

p* = [e^(0.03 - 0.08) (3/12) - 0.80]/(1.20 - 0.80)

p* = (0.98758 - 0.80)/0.40

p* = 0.4689

Hence, the  risk-neutral probability that the stock price moves up in 3 months is p*^2 = (0.4689)^2 = 0.2199.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A stock index currently stands at 300 and has a volatility of 20%. The risk-free interest...
A stock index currently stands at 300 and has a volatility of 20%. The risk-free interest rate is 8% and the dividend yield on the index is 3%. Use the Black-Scholes-Merton formula to calculate the price of a European call option with strike price 325 and the price of a European put option with strike price of 275. The options will expire in six months. What is the cost of the range forward created using options in Part (a)? Use...
A stock index is currently 1,500. Its volatility is 18%. The risk-free rate is 4% per...
A stock index is currently 1,500. Its volatility is 18%. The risk-free rate is 4% per annum for all maturities and the dividend yield on the index is 2.5% (both continuously compounded). Calculate values for u, d, and p when a 6-month time step is used. What is value of a 12-month European put option with a strike price of 1,480 given by a two-step binomial tree? In the question above, what is the value of a 12-month American put...
A stock index is currently 1,500. ITs volatility is 18% per annum. The continuously compounded risk-free...
A stock index is currently 1,500. ITs volatility is 18% per annum. The continuously compounded risk-free rate is 4% per annum for all maturities. (1) Calculate values for u,d, and p when a six-month time step is used. (2) Calculate the value a 12-month American put option with a strike price of 1,480 given by a two-step binomial tree.
An index currently stands at 736 and has a volatility of 27% per annum. The risk-free...
An index currently stands at 736 and has a volatility of 27% per annum. The risk-free rate of interest is 5.25% per annum and the index provides a dividend yield of 3.65% per annum. Calculate the value of a five-month European put with an exercise price of 730.
Current stock price is $150; volatility is 20% per annum. An at-the-money European put option on...
Current stock price is $150; volatility is 20% per annum. An at-the-money European put option on the stock expires in 3 months. Risk free rate is 5% per annum, continuously compounded. There is no dividend expected over the next 3 months. Use a 3-step CRR model to price this option.
A stock index level is currently 2,000. Its volatility is 25%. The risk-free rate is 4%...
A stock index level is currently 2,000. Its volatility is 25%. The risk-free rate is 4% per annum (continuously compounded) for all maturities and the dividend yield on the index is 2%. Using the Black-Scholes model: a) Derive the value a 6-month European put option with a strike price of 2020. b) Derive the position in the index that is needed today to hedge a long position in the put option. Assume that the option is written on 250 times...
The market index currently stands at 650 and has a volatility of 30 percent per annum....
The market index currently stands at 650 and has a volatility of 30 percent per annum. The risk- free rate of interest is 6 percent per annum and the index provides a divided yield of 3 percent per annum. Calculate the value of a three-month European put on that index with an exercise price of 650, using Merton’s index option pricing formula. (Show your interim results, such as d1, d2, N(d1) and N(d2))
A 3-month American call option on a stock has a strike price of $20. The stock...
A 3-month American call option on a stock has a strike price of $20. The stock price is $20, the risk-free rate is 3% per annum, and the volatility is 25% per annum. A dividend of $1 per share is expected at the end of the second month. Use a three-step binomial tree to calculate the option price.
Question 1 (4 marks) A stock selling at $50 is expected to pay no dividend and...
Question 1 A stock selling at $50 is expected to pay no dividend and has a volatility of 40%. Consider put options with a 6-month maturity and a $50 strike price. The risk-free rate is 10% per annum continuously compounded. Consider a three-step binomial tree. (a) Use the binomial tree to price the put option if it is American.
The volatility of a non-dividend-paying stock whose price is $40, is 35%. The risk-free rate is...
The volatility of a non-dividend-paying stock whose price is $40, is 35%. The risk-free rate is 6% per annum (continuously compounded) for all maturities. Use a two-step tree to calculate the value of a derivative that pays off [max(?!−52,0)]" where is the stock price in six months?