Question

A circuit has resistor (2 ohms), Capacitor (0.0005 Farads), Inductor (0.01 Henry) in series with 60...

A circuit has resistor (2 ohms), Capacitor (0.0005 Farads), Inductor (0.01 Henry) in series with 60 Hz, 120 V. Determine: 1. Reactance of the capacitor and Inductor, 2.Apparent Power, 3. Real Power, 4.Reactive Power, 5.Power Factor, and 6. Power Factor Angle.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An AC voltage source is connected in series to an inductor, a capacitor, and a resistor...
An AC voltage source is connected in series to an inductor, a capacitor, and a resistor of 5 Ohms. At the frequency when the phase angle is zero, capacitive reactance is 6 Ohms. What is the total impedance of the of the circuit at a frequency which is a factor of 2.4 times less than this frequency? Answer in Ohms.
An RLC series circuit has a 3.30 Ω resistor, a 120 μH inductor, and an 65.0...
An RLC series circuit has a 3.30 Ω resistor, a 120 μH inductor, and an 65.0 μF capacitor. (a)Find the power factor at f = 120 Hz. (b)What is the phase angle at 120 Hz? (c) If the voltage source has Vrms = 4.10 V, what is the average power at 120 Hz? (d)Find the average power at the circuit’s resonant frequency.
A capacitor of 20 microF and a resistor of 50 ohms are connected in series across...
A capacitor of 20 microF and a resistor of 50 ohms are connected in series across a 240 V, 50 Hz supply. Calculate: (a) the capacitive reactance, (b) the circuit impedance, (c) the total current flow, (d) the potential difference across each element, (e) the power factor, (f) the average power absorbed by the circuit
A series RLC circuit consists of a 65 Ω resistor, a 0.52 H inductor, and a...
A series RLC circuit consists of a 65 Ω resistor, a 0.52 H inductor, and a 35 μF capacitor. It is attached to a 120 V/60 Hz power line. A. What is the peak current II at this frequency? B. What is the phase angle ϕ? C. What is the average power loss?
A series AC circuit contains a resistor, an inductor of 210 mH, a capacitor of 5.50...
A series AC circuit contains a resistor, an inductor of 210 mH, a capacitor of 5.50 µF, and a source with ΔVmax = 240 V operating at 50.0 Hz. The maximum current in the circuit is 200 mA. (a) Calculate the inductive reactance. Ω (b) Calculate the capacitive reactance. Ω (c) Calculate the impedance. kΩ (d) Calculate the resistance in the circuit. kΩ (e) Calculate the phase angle between the current and the source voltage. °
Modell and solve the RLC series circuit of resistor(R) of 10 ohms, inductor (L) of Henry...
Modell and solve the RLC series circuit of resistor(R) of 10 ohms, inductor (L) of Henry and capacitance of 10 micro-farad are attached
consider a series RLC circuit with a resistor E = 43.0 ohm, an inductor L =...
consider a series RLC circuit with a resistor E = 43.0 ohm, an inductor L = 15.5 mH, a capacitor C = 0.0545 micro farads and an AC source that provides an RMS voltage of 0.301 V at 16.2 kHz what is the impedance of the circuit in ohms
A resistor with a resistance of 270. ohms, an inductor with an inductance of 160. mH...
A resistor with a resistance of 270. ohms, an inductor with an inductance of 160. mH and a capacitor with capacitance 115 µF are all connected in series with a 60 VAC source. At the resonance frequency, find the inductive reactance in the circuit. ohms
Find the current in a circuit consisting of a coil and capacitor in series, if the...
Find the current in a circuit consisting of a coil and capacitor in series, if the applied voltage v= 120 volts, frequency f = 60 Hz; the inductance of the coil is L = 0.30 henry; the resistance of the coil is R = 40 ohms; and the capacitance of the capacitor is C= 2 µf. (b) Find the power used in the circuit.
Problem 32.51-- A series RLC circuit consists of a 80 Ω resistor, a 0.52 H inductor,...
Problem 32.51-- A series RLC circuit consists of a 80 Ω resistor, a 0.52 H inductor, and a 50 μF capacitor. It is attached to a 120 V/60 Hz power line. a) What is the peak current I at this frequency? Express your answer with the appropriate units b) What is the phase angle ϕ? c) What is the average power loss? Express your answer with the appropriate units.