Question

Design a combinational circuit that forms the 2-bit binary sum S1S0 of two 2-bit numbers X1X0...

Design a combinational circuit that forms the 2-bit binary sum S1S0 of two 2-bit numbers X1X0 and Y1Y0 and can produce a carry output C. Design the entire circuit with the help of three half adder circuit implementing each of the three outputs with XOR-AND and OR gates.

Homework Answers

Answer #1

above two bit adder design is using blocks of half adders ( H A ) and or gate

Below digital circuit is two bit adder using XOR - AND and OR gates

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Adder Start out by picking 2 positive six bit binary numbers that are less than 3210,...
Adder Start out by picking 2 positive six bit binary numbers that are less than 3210, written in 2's complement notation. The eventual goal is to add these two numbers. 1) Look at the LSB bit of the numbers, and using logic gates (NANDs, NORs, etc.) design a circuit that correctly gives the right output for any possible combination of bits in the LSB place. 2) Now look at the next column to the left (next to LSB). In this...
I have an 4-bit unsigned Binary adder that performs F=A+B with carry in and carry out,...
I have an 4-bit unsigned Binary adder that performs F=A+B with carry in and carry out, I have to draw the smallest circuit using the adder and whatever other combinational logic gates I need to perform the 4-bit function below on 2's complement numbers A and B F=A+B if ADD=1, F=A-B if ADD=0
Design a 4-bit adder-subtractor circuit using the 4-bit binary Full adders (74LS83) and any necessary additional...
Design a 4-bit adder-subtractor circuit using the 4-bit binary Full adders (74LS83) and any necessary additional logic gates. The circuit has a mode input bit, M, that controls its operation. Specifically, when M=0, the circuit becomes a 4-bit adder, and when M=1, the circuit becomes a 4-bit subtractor that performs the operation A plus the 2’s complement of B.Where A and B are two 4-bits binary numbers. That is, * When M=0, we perform A+B, and we assume that both...
The software I am using Is Logisim. Design and build a circuit to add 2 2-bit...
The software I am using Is Logisim. Design and build a circuit to add 2 2-bit binary numbers. This means that you will have 4 input lines and 3 output lines. The three output lines are 2 bits for the sum and a carry out line. Use logisim to construct your circuit. Upload the .circ file to blackboard
Design a combinational logic circuit that accepts a decimal value represented as a four-bit Aiken (or...
Design a combinational logic circuit that accepts a decimal value represented as a four-bit Aiken (or "2421") code (X3 X2 X1 X0) as its input and that creates a four-bit output (Y3 Y2 Y1 Y0) that uses standard binary (radix-2) encoding to represent the same decimal value. For each of the four outputs, construct a standard truth table with inputs X3 X2 X1 X0 appearing in order from 0000, 0001, 0010, ..., 1111. The 6 disallowed input combinations can be...
My question: what is the truth table for full-comparator?? Full question: Design a comparator circuit for...
My question: what is the truth table for full-comparator?? Full question: Design a comparator circuit for binary numbers using only NAND gates. It should take as input two numbers represented in standard binary, X and Y, and produce two outputs, G and L, which indicate that X is Greater than or Less than Y, respectively. If both outputs are zero, it indicates that the values are equal. Design a half-comparator, full-comparator, and a full four-bit comparator. With nothing more than...
Implement a 2-bit adder using only a 32x3 ROM. The adder adds two 2-bit numbers, {A1...
Implement a 2-bit adder using only a 32x3 ROM. The adder adds two 2-bit numbers, {A1 A0} and {B1 B0}. The adder also has a carry-in (Cin) input. Thus there are 5 inputs: A1 A0, B1 B0, Cin. There are 3 outputs, a 2-bit sum (S1 S0) as well as a carry-out (Cout). Include a diagram of the ROM: label inputs/outputs correctly and show the contents of ROM cells (0's/1's).
Design a Single cell 1 bit Carry propagate (or Ripple Carry Adder) full adder. a. Generate...
Design a Single cell 1 bit Carry propagate (or Ripple Carry Adder) full adder. a. Generate the truth table b. Using K-map or Boolean algebra, determine the logical expression for Carry out (C-out) and Sum (S) Outputs C. Draw the circuit diagram of the outputs in step b
Design a circuit that can add three unsigned four-bit numbers. Use four-bit adders and any other...
Design a circuit that can add three unsigned four-bit numbers. Use four-bit adders and any other gates needed.
Q5) Design a magnitude comparator that takes two three bit unsigned numbers, A = (a2a1a0) and...
Q5) Design a magnitude comparator that takes two three bit unsigned numbers, A = (a2a1a0) and B = (b2b1b0), and outputs LE = 1 if A<=B, otherwise LE = 0. Give the Boolean expression for the circuit output g. Draw the circuit using only 3 4x1 MUXs.(16pt)