Question

Consider a duopoly with a Cournot competition. The demand of the market is Q=2-p. Both firm...

  1. Consider a duopoly with a Cournot competition. The demand of the market is Q=2-p. Both firm 1 and firm 2’s marginal costs can take two values. For firm 1 it can be MC=5/4 with probability 1/3 and MC=3/4 with probability 2/3. For firm 2 it can be MC=5/4 with probability 2/3 and MC=3/4 with probability 1/3. Each firm knows its own MC but does not know the MC of the other firm. (But the probabilities are known to everyone.) What will be he Bayesian equilibrium of the game?

Homework Answers

Answer #1

AS THIS IS A CASE OF COURNOT COMPETITION WITH A DUOPOLY . WE ARE GIVEN WITH THE DEMAND AND MARGINAL COST OF BOTH THE FIRMS AS WELL AS PROBABLITY TO BE CONSIDERED.

I HAVE GIVE THE FORMULA AND ANSWER

HOPE IT HELPS..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a Cournot duopoly operating in a market with inverse demand P(Q) = a - Q,...
Consider a Cournot duopoly operating in a market with inverse demand P(Q) = a - Q, where Q = q1 + q2 is the aggregate quantity on the market. Both firms have total costs ci(qi) = cqi, but demand is uncertain: it is High (a = aH) with probability theta and low (a= aL) with probability 1 - theta. Furthermore, information is asymmetric: firm 1 knows whether demand is high or low, but firm 2 does not. All this is...
Consider the Cournot duopoly model where the inverse demand is P(Q) = a – Q but...
Consider the Cournot duopoly model where the inverse demand is P(Q) = a – Q but firms have asymmetric marginal costs: c1 for firm 1 and c2 for firm 2. What is the Nash equilibrium if 0 < ci < a/2 for each firm? What if c1 < c2 < a, but 2c2 > a + c1?
There is a Cournot duopoly competition between Firm 1 and Firm 2. The inverse demand function...
There is a Cournot duopoly competition between Firm 1 and Firm 2. The inverse demand function is given by P(Q)=100-q, where Q=q1+q2 and qi denotes the quantity produced by firm i for all iÎ {1, 2} and the cost function is given by ci(qi)=10qi. Describe this problem as a normal-form game. Find pure-strategy Nash Equilibria for both firms.
Consider the Cournot duopoly model where the inverse demand function is given by P(Q) = 100-Q...
Consider the Cournot duopoly model where the inverse demand function is given by P(Q) = 100-Q but the firms have asymmetric marginal costs: c1= 40 and c2= 60. What is the Nash equilibrium of this game?
What is the? homogeneous-good duopoly Cournot equilibrium if the market demand function is Q=1,600?400?p, and each?...
What is the? homogeneous-good duopoly Cournot equilibrium if the market demand function is Q=1,600?400?p, and each? firm's marginal cost is ?$0.28 per? unit? The? Cournot-Nash equilibrium occurs where q 1= and q 2= ?(Enter numeric responses using real numbers rounded to two decimal? places.)
What is the homogeneous-good duopoly Cournot equilibrium if the market demand function is Q = 1,000...
What is the homogeneous-good duopoly Cournot equilibrium if the market demand function is Q = 1,000 - 1,000p, and each firm's marginal cost is $0.28 per unit? The Cournot-Nash equilibrium occurs where q 1 = ? and q 2 = ?. (Enter numeric responses using real numbers rounded to two decimal places.) Solve for q1 and q2 and determine the equilibrium price.
A duopoly faces a market demand of p=120minus−Q. Firm 1 has a constant marginal cost of...
A duopoly faces a market demand of p=120minus−Q. Firm 1 has a constant marginal cost of MC1equals=​$4040. Firm​ 2's constant marginal cost is MC2=​$80. Calculate the output of each​ firm, market​ output, and price if there is​ (a) a collusive equilibrium or​ (b) a Cournot equilibrium. The collusive equilibrium occurs where q1 equals _____ and q2 equals ________   ​(Enter numeric responses using real numbers rounded to two decimal​ places)
Consider an asymmetric duopoly. The market demand is p = 1 − Q. Firm 1 has...
Consider an asymmetric duopoly. The market demand is p = 1 − Q. Firm 1 has zero cost while Firm 2 has constant marginal cost c distributed over the interval 0, 1/2. a. Find the equilibrium when firms compete in quantities. b. Suppose a regulator can marginally decrease c. Will this change increase social welfare and why? Give your answer in terms of the market share of Firm 2. c. Suppose now that firms compete in prices. Find the Bertrand...
Two firms in a Cournot duopoly produce quantities Q 1 and Q 2 and the demand...
Two firms in a Cournot duopoly produce quantities Q 1 and Q 2 and the demand equation is given as P = 80 - 2Q 1 - 2Q 2. The firms' marginal cost are identical and given by MCi(Qi) = 4Qi, where i is either firm 1 or firm 2. a. Q1 = 80 - 4Q2 and Q2 = 80 - 4Q1. b. Q1 = 10 - (1/4)Q2 and Q2 = 10 - (1/4)Q1. c. Q1 = 80 - 2Q2...
2. Consider two identical firms in a Cournot competition. The market demand is P = a...
2. Consider two identical firms in a Cournot competition. The market demand is P = a – bQ. TC1 = cq1 = TC2 = cq2 . a. Find the profit function of firm 1. b. Maximize the profit function to find the reaction function of firm 1. c. Solve for the Cournot-Nash Equilibrium. d. Carefully discuss how the slope of the demand curve affects outputs and price.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT