(C++) Funtion code only
AVL Trees
1) Determine if a tree is an AVL tree
2) Characteristics of an AVL tree
3) Algorithm for balancing in all situations
4) Big O
1. Checking if a given binary tree is an AVL tree or not. |
#include <bits/stdc++.h>
using namespace std;
class nod { //node declaration
public:
int data;
nod* l;
nod* r;
};
nod* newNod(int d) { //creation of new node
nod* Nod = new nod();
Nod->data = d;
Nod->l = NULL;
Nod->r = NULL;
return(Nod);
}
int max(int x, int y) { //return maximum between two values
return (x >= y)? x: y;
}
int height(nod* node) { //get the height means the number of nodes along the longest path from the root
//node down to the farthest leaf node of the tree.
if(node == NULL)
return 0;
return 1 + max(height(node->l), height(node->r));
}
bool AVL(nod *root) {
int lh;
int rh;
if(root == NULL)
return 1;
lh = height(root->l); // left height
rh = height(root->r); // right height
if(abs(lh-rh) <= 1 && AVL(root->l) && AVL(root->r)) return 1;
return 0;
}
int main() {
//take the nodes of the tree as input
nod *root = newNod(7);
root->l = newNod(6);
root->r = newNod(12);
root->l->l = newNod(4);
root->l->r = newNod(5);
root->r->r = newNod(13);
if(AVL(root))
cout << "The Tree is AVL Tree"<<endl;
else
cout << "The Tree is not AVL Tree "<<endl;
nod *root1 = newNod(7);
root1->l = newNod(6);
root1->r = newNod(12);
root1->l->l = newNod(4);
root1->l->r = newNod(5);
root1->r->r = newNod(13);
root1->r->r->r = newNod(26);
if(AVL(root1))
cout << "The Tree is AVL Tree"<<endl;
else
cout << "The Tree is not AVL Tree "<<endl;
return 0;
}
OUTPUT |
The Tree is AVL Tree
The Tree is not AVL Tree
____________________________________________________________________________________________
2.Characteristics of an AVL Tree |
1. AVL Trees are self balancing binary search trees.
2. Balancing factor of each node is either 0 or 1 or -1 .
3. AVL tree balances itself through the following rotation techniques :
i) Left Rotation
ii) Right Rotation
iii) Left-Right Rotation
iv) Right-Left Rotation
____________________________________________________________________________________________
3.Algorithm for balancing in all situations (in C++) |
#include<bits/stdc++.h>
using namespace std;
// An AVL tree node
class Node
{
public:
int key;
Node *left;
Node *right;
int height;
};
// A utility function to get maximum
// of two integers
int max(int a, int b);
// A utility function to get the
// height of the tree
int height(Node *N)
{
if (N == NULL)
return 0;
return N->height;
}
// A utility function to get maximum
// of two integers
int max(int a, int b)
{
return (a > b)? a : b;
}
/* Helper function that allocates a
new node with the given key and
NULL left and right pointers. */
Node* newNode(int key)
{
Node* node = new Node();
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1; // new node is initially
// added at leaf
return(node);
}
// A utility function to right
// rotate subtree rooted with y
// See the diagram given above.
Node *rightRotate(Node *y)
{
Node *x = y->left;
Node *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(height(y->left),
height(y->right)) + 1;
x->height = max(height(x->left),
height(x->right)) + 1;
// Return new root
return x;
}
// A utility function to left
// rotate subtree rooted with x
// See the diagram given above.
Node *leftRotate(Node *x)
{
Node *y = x->right;
Node *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(height(x->left),
height(x->right)) + 1;
y->height = max(height(y->left),
height(y->right)) + 1;
// Return new root
return y;
}
// Get Balance factor of node N
int getBalance(Node *N)
{
if (N == NULL)
return 0;
return height(N->left) - height(N->right);
}
// Recursive function to insert a key
// in the subtree rooted with node and
// returns the new root of the subtree.
Node* insert(Node* node, int key)
{
/* 1. Perform the normal BST insertion */
if (node == NULL)
return(newNode(key));
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else // Equal keys are not allowed in BST
return node;
/* 2. Update height of this ancestor node */
node->height = 1 + max(height(node->left),
height(node->right));
/* 3. Get the balance factor of this ancestor
node to check whether this node became
unbalanced */
int balance = getBalance(node);
// If this node becomes unbalanced, then
// there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node->left->key)
{
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key)
{
node->right = rightRotate(node->right);
return leftRotate(node);
}
/* return the (unchanged) node pointer */
return node;
}
// A utility function to print preorder
// traversal of the tree.
// The function also prints height
// of every node
void preOrder(Node *root)
{
if(root != NULL)
{
cout << root->key << " ";
preOrder(root->left);
preOrder(root->right);
}
}
// Driver Code
int main()
{
Node *root = NULL;
/* Constructing tree given in
the above figure */
root = insert(root, 10);
root = insert(root, 20);
root = insert(root, 30);
root = insert(root, 40);
root = insert(root, 50);
root = insert(root, 25);
/* The constructed AVL Tree would be
30
/ \
20 40
/ \ \
10 25 50
*/
cout << "Preorder traversal of the "
"constructed AVL tree is \n";
preOrder(root);
return 0;
}
OUTPUT Preorder traversal of the constructed AVL tree is 30 20 10 25 40 50 |
___________________________________________________________________________________________
4.Big O |
Time complexity
Because of Balancing property , the insertion , deletion and search operations take O(logn) in both the average and the worst cases.
Space Complexity
O(n) in both the average and the worst case.
Get Answers For Free
Most questions answered within 1 hours.