Write a program that does the following. *Java Code*
• Create an instance of the Hashtable class from the Java API
• Make the initial table size of the hash table 1000 and the load factor 0.75 (which has been shown experimentally to be optimal).
• Create an instance of the AVLtree class attached to this homework.
• Measure the running time of adding various numbers of entries (as required by the table below) to the hash table and the AVL tree.
• For each of those cases, measure the running time of searching for a key that is not in the hash table and do the same for the AVL tree.
Fill in the following charts. Adjust the values of n as needed according to your platform to obtain at least 4 measurements.
construction time n = 10^2 n = 10^3 n = 10^4 n = 10^5 n = 10^6
Hash table
Tree
search time n = 10^2 n = 10^3 n = 10^4 n = 10^5 n = 10^6
Hash table
Tree
How do these measurements compare with your conjecture in parts 1 and 2? If the results differ from your conjecture, investigate the reason by looking carefully at the code of Hashtable and AVLtree provided and explain what might have happened.
import java.util.Scanner;
/ Class AVLNode /
class AVLNode
{
AVLNode left, right;
int data;
int height;
/ Constructor /
public AVLNode()
{
left = null;
right = null;
data = 0;
height = 0;
}
/ Constructor /
public AVLNode(int n)
{
left = null;
right = null;
data = n;
height = 0;
}
}
/ Class AVLTree /
class AVLTree
{
private AVLNode root;
/ Constructor /
public AVLTree()
{
root = null;
}
/ Function to check if tree is empty /
public boolean isEmpty()
{
return root == null;
}
/ Make the tree logically empty /
public void makeEmpty()
{
root = null;
}
/ Function to insert data /
public void insert(int data)
{
root = insert(data, root);
}
/ Function to get height of node /
private int height(AVLNode t )
{
return t == null ? -1 : t.height;
}
/ Function to max of left/right node /
private int max(int lhs, int rhs)
{
return lhs > rhs ? lhs : rhs;
}
/ Function to insert data recursively /
private AVLNode insert(int x, AVLNode t)
{
if (t == null)
t = new AVLNode(x);
else if (x < t.data)
{
t.left = insert( x, t.left );
if( height( t.left ) - height( t.right ) == 2 )
if( x < t.left.data )
t = rotateWithLeftChild( t );
else
t = doubleWithLeftChild( t );
}
else if( x > t.data )
{
t.right = insert( x, t.right );
if( height( t.right ) - height( t.left ) == 2 )
if( x > t.right.data)
t = rotateWithRightChild( t );
else
t = doubleWithRightChild( t );
}
else
; // Duplicate; do nothing
t.height = max( height( t.left ), height( t.right ) ) + 1;
return t;
}
/ Rotate binary tree node with left child /
private AVLNode rotateWithLeftChild(AVLNode k2)
{
AVLNode k1 = k2.left;
k2.left = k1.right;
k1.right = k2;
k2.height = max( height( k2.left ), height( k2.right ) ) + 1;
k1.height = max( height( k1.left ), k2.height ) + 1;
return k1;
}
/ Rotate binary tree node with right child /
private AVLNode rotateWithRightChild(AVLNode k1)
{
AVLNode k2 = k1.right;
k1.right = k2.left;
k2.left = k1;
k1.height = max( height( k1.left ), height( k1.right ) ) + 1;
k2.height = max( height( k2.right ), k1.height ) + 1;
return k2;
}
/**
* Double rotate binary tree node: first left child
with its right child; then node k3 with new left child /
private AVLNode doubleWithLeftChild(AVLNode k3)
{
k3.left = rotateWithRightChild( k3.left );
return rotateWithLeftChild( k3 );
}
/**
* Double rotate binary tree node: first right child
with its left child; then node k1 with new right child /
private AVLNode doubleWithRightChild(AVLNode k1)
{
k1.right = rotateWithLeftChild( k1.right );
return rotateWithRightChild( k1 );
}
/ Functions to count number of nodes /
public int countNodes()
{
return countNodes(root);
}
private int countNodes(AVLNode r)
{
if (r == null)
return 0;
else
{
int l = 1;
l += countNodes(r.left);
l += countNodes(r.right);
return l;
}
}
/ Functions to search for an element /
public boolean search(int val)
{
return search(root, val);
}
private boolean search(AVLNode r, int val)
{
boolean found = false;
while ((r != null) && !found)
{
int rval = r.data;
if (val < rval)
r = r.left;
else if (val > rval)
r = r.right;
else
{
found = true;
break;
}
found = search(r, val);
}
return found;
}
/ Function for inorder traversal /
public void inorder()
{
inorder(root);
}
private void inorder(AVLNode r)
{
if (r != null)
{
inorder(r.left);
System.out.print(r.data +" ");
inorder(r.right);
}
}
/ Function for preorder traversal /
public void preorder()
{
preorder(root);
}
private void preorder(AVLNode r)
{
if (r != null)
{
System.out.print(r.data +" ");
preorder(r.left);
preorder(r.right);
}
}
/ Function for postorder traversal /
public void postorder()
{
postorder(root);
}
private void postorder(AVLNode r)
{
if (r != null)
{
postorder(r.left);
postorder(r.right);
System.out.print(r.data +" ");
}
}
}
/ Class AVL Tree Test /
public class AVLTreeTest
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
/ Creating object of AVLTree /
AVLTree avlt = new AVLTree();
System.out.println("AVLTree Tree Test\n");
char ch;
/ Perform tree operations /
do
{
System.out.println("\nAVLTree Operations\n");
System.out.println("1. insert ");
System.out.println("2. search");
System.out.println("3. count nodes");
System.out.println("4. check empty");
System.out.println("5. clear tree");
int choice = scan.nextInt();
switch (choice)
{
case 1 :
System.out.println("Enter integer element to insert");
avlt.insert( scan.nextInt() );
break;
case 2 :
System.out.println("Enter integer element to search");
System.out.println("Search result : "+ avlt.search( scan.nextInt()
));
break;
case 3 :
System.out.println("Nodes = "+ avlt.countNodes());
break;
case 4 :
System.out.println("Empty status = "+ avlt.isEmpty());
break;
case 5 :
System.out.println("\nTree Cleared");
avlt.makeEmpty();
break;
default :
System.out.println("Wrong Entry \n ");
break;
}
/ Display tree /
System.out.print("\nPost order : ");
avlt.postorder();
System.out.print("\nPre order : ");
avlt.preorder();
System.out.print("\nIn order : ");
avlt.inorder();
System.out.println("\nDo you want to continue (Type y or n)
\n");
ch = scan.next().charAt(0);
} while (ch == 'Y'|| ch == 'y');
}
}
advertisements
AVLTree Tree Test
AVLTree Operations
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
4
Empty status = true
Post order :
Pre order :
In order :
Do you want to continue (Type y or n)
y
AVLTree Operations
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
10
Post order : 10
Pre order : 10
In order : 10
Do you want to continue (Type y or n)
y
AVLTree Operations
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
9
Post order : 9 10
Pre order : 10 9
In order : 9 10
Do you want to continue (Type y or n)
y
AVLTree Operations
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
8
Post order : 8 10 9
Pre order : 9 8 10
In order : 8 9 10
Do you want to continue (Type y or n)
y
AVLTree Operations
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
7
Post order : 7 8 10 9
Pre order : 9 8 7 10
In order : 7 8 9 10
Do you want to continue (Type y or n)
y
AVLTree Operations
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
6
Post order : 6 8 7 10 9
Pre order : 9 7 6 8 10
In order : 6 7 8 9 10
Do you want to continue (Type y or n)
y
AVLTree Operations
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
5
Post order : 5 6 8 10 9 7
P
Get Answers For Free
Most questions answered within 1 hours.