Question

Suppose that the diameters of oak trees are normally distributed with a mean of 4 feet...

Suppose that the diameters of oak trees are normally distributed with a mean of 4 feet and a standard deviation of 0.375 feet. Step 1 of 5: What is the probability of walking down the street and finding an oak tree with a diameter of more than 4.875 feet? [Remember to round probabilities to 4 decimal places] Step 2 of 5: What is the probability that the tree you find is between 4.2 and 5 feet in diameter? Step 3 of 5: Interpret your probability from the previous step. Step 4 of 5: If we wanted to look at the top 26% of trees, what would their minimum diameter be? [Round to 2 decimals] Step 5 of 5: If we know that all the trees in our neighborhood are in the bottom 12% of tree diameters, what is the largest one we could expect to find?

Homework Answers

Answer #1

Step 1 of 5:

for normal distribution z score =(X-μ)/σx
here mean=       μ= 4
std deviation   =σ= 0.3750
probability = P(X>4.875) = P(Z>2.33)= 1-P(Z<2.33)= 1-0.9901= 0.0099

Step 2 of 5: :

probability = P(4.2<X<5) = P(0.53<Z<2.67)= 0.9962-0.7019= 0.2943

Step 4 of 5:

for 74th percentile critical value of z= 0.64
therefore corresponding value=mean+z*std deviation= 4.24

Step 5 of 5:

for 12th percentile critical value of z= -1.17
therefore corresponding value=mean+z*std deviation= 3.56
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Please box or bold font answers Suppose that the diameters of oak trees are normally distributed...
Please box or bold font answers Suppose that the diameters of oak trees are normally distributed with a mean 4 feet and standard deviation of 4 inches. Step 1 of 5: What is the probability of finding a tree with diameter of more than 3.75 feet? Step 2 of 5: What is the probability that the tree you find is between 3.75 and 4.75 feet in diameter? Step 3 of 5: Interpret your probability from the previous step. Step 4...
Suppose that the diameters of oak trees are normally distributed with a mean of 4 feet...
Suppose that the diameters of oak trees are normally distributed with a mean of 4 feet and a standard deviation of 0.375 feet. What is the probability of a sampling a set of 87 oaks trees and finding their mean to differ from the population mean by less than 0.1 feet in diameter?
The heights of pecan trees are normally distributed with a mean of 10 feet and a...
The heights of pecan trees are normally distributed with a mean of 10 feet and a standard deviation of 2 feet. 13. Show all work. Just the answer, without supporting work, will receive no credit. (a) What is the probability that a randomly selected pecan tree is between 9 and 12 feet tall? (Round the answer to 4 decimal places) (b) Find the 75th percentile of the pecan tree height distribution. (Round the answer to 2 decimal places) (c) For...
The heights of pecan trees are normally distributed with a mean of 10 feet and a...
The heights of pecan trees are normally distributed with a mean of 10 feet and a standard deviation of 2 feet. 13.Show all work. Just the answer, without supporting work, will receive no credit. (a)What is the probability that a randomly selected pecan tree is between 9 and 12 feet tall? (b)Find the 75th percentile of the pecan tree height distribution.
Assume that in an apple orchard the heights of the trees are normally distributed with a...
Assume that in an apple orchard the heights of the trees are normally distributed with a mean of 14 feet and a standard deviation of 3 feet. Show all work for the following problems. (a) What is the probability that a randomly selected tree is at least 7 feet tall? (b) What is the probability that a randomly selected tree is between 14 and 16 feet tall? Round answers to 4 decimal places.
Suppose that the walking step lengths of adult males are normally distributed with a mean of...
Suppose that the walking step lengths of adult males are normally distributed with a mean of 2.3 feet and a standard deviation of 0.20 feet. A sample of 82 men’s step lengths is taken. Step 2 of 2 :   Find the probability that the mean of the sample taken is less than 2.1 feet. Round your answer to 4 decimal places, if necessary.
The diameters of ball bearings are distributed normally. The mean diameter is 106 millimeters and the...
The diameters of ball bearings are distributed normally. The mean diameter is 106 millimeters and the standard deviation is 4 millimeters. Find the probability that the diameter of a selected bearing is greater than 111 millimeters. Round your answer to four decimal places
The diameters of ball bearings are distributed normally. The mean diameter is 120 millimeters and the...
The diameters of ball bearings are distributed normally. The mean diameter is 120 millimeters and the standard deviation is 4 millimeters. Find the probability that the diameter of a selected bearing is greater than 125 millimeters. Round your answer to four decimal places.
The body temperatures of adults are normally distributed with a mean of 98.60˚F and a standard...
The body temperatures of adults are normally distributed with a mean of 98.60˚F and a standard deviation of 0.73˚F. A)What temperature would put you in the 76th percentile? Round to 2 decimals B)What temperature would put you in the bottom 20% of temperatures? Round to 2 decimals. C)What is the probability that someone has a body temperature of 100°F or more? [Remember to round probabilities to 4 decimal places] D)What is the probability that someone has a body temperature less...
4. Suppose the birth weights of babies in the USA are normally distributed, with mean 7.47...
4. Suppose the birth weights of babies in the USA are normally distributed, with mean 7.47 lb and standard deviation 1.21 lb. a. Find the probability that a randomly chosen baby weighed between 6.4 and 8.1 pounds. (Show work.) b. Suppose a hospital wants to try a new intervention for the smallest 4% of babies (those with the lowest birth weights). What birth weight in pounds is the largest that would qualify for this group? (Show your work.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT