Question

List all the ordered pairs in the relation R = {(a, b) | b divides a}...

List all the ordered pairs in the relation

R = {(a, b) | b divides a} on the set {1, 2, 3, 4, 5, 6}

Homework Answers

Answer #1

If you liked the solution then give a thumbs up ? it will be really appreciated ?

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let R be a relation on set RxR of ordered pairs of real numbers such that...
Let R be a relation on set RxR of ordered pairs of real numbers such that (a,b)R(c,d) if a+d=b+c. Prove that R is an equivalence relation and find equivalence class [(0,b)]R
Let A be the set of all integers, and let R be the relation "m divides...
Let A be the set of all integers, and let R be the relation "m divides n." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
There is no equivalence relation R on set {a, b, c, d, e} such that R...
There is no equivalence relation R on set {a, b, c, d, e} such that R contains less than 5 ordered pairs (True or False)
Let P be the set of all ordered pairs (a, b) where a and b are...
Let P be the set of all ordered pairs (a, b) where a and b are real numbers. Let us define a two-place relation ≡ on P by (a, b) ≡ (c, d) if and only if a^2 − c^2 = 2b − 2d where (a, b) and (c, d) belong to P. Prove that ≡ is an equivalence relation on P. Draw a diagram on the X × Y plane of the equivalence class that contains the point (2,...
2. Define a relation R on pairs of real numbers as follows: (a, b)R(c, d) iff...
2. Define a relation R on pairs of real numbers as follows: (a, b)R(c, d) iff either a < c or both a = c and b ≤ d. Is R a partial order? Why or why not? If R is a partial order, draw a diagram of some of its elements. 3. Define a relation R on integers as follows: mRn iff m + n is even. Is R a partial order? Why or why not? If R is...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. I had to prove it was an equivalence relation as well, but that part was not hard. Just want to know if the logic and presentation is sound for the last part: 8.48) A relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. Prove that R...
Let A = {1,2,3}. Determine all the equivalence relations R on A. For each of these,...
Let A = {1,2,3}. Determine all the equivalence relations R on A. For each of these, list all ordered pairs in the relation
Are the following vector space and why? 1.The set V of all ordered pairs (x, y)...
Are the following vector space and why? 1.The set V of all ordered pairs (x, y) with the addition of R2, but scalar multiplication a(x, y) = (x, y) for all a in R. 2. The set V of all 2 × 2 matrices whose entries sum to 0; operations of M22.
Determine whether the given relation is an equivalence relation on {1,2,3,4,5}. If the relation is an...
Determine whether the given relation is an equivalence relation on {1,2,3,4,5}. If the relation is an equivalence relation, list the equivalence classes (x, y E {1, 2, 3, 4, 5}.) {(1,1), (2,2), (3,3), (4,4), (5,5), (1,3), (3,1), (3,4), (4,3)} If the relation above is not an equivalence relation, state that the relation is not an equivalence relation  and why. Example: "Not an equivalence relation. Relation is not symmetric" Remember to test all pairs in relation R
Consider the following set of ordered pairs shown below. Assuming that the regression equation is y+...
Consider the following set of ordered pairs shown below. Assuming that the regression equation is y+ 0.833+ 1.000x and the SSE=2.8332​, construct a​ 90% confidence interval for x=2. X: 5 1 4 4 3 1 Y:6 2 6 4 3 2 Calculate the upper and lower limits of the confidence interval. UCL=? LCL=?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT