Question

Calculate the rate constant, k, for a reaction at 65.0 °C that has an activation energy...

Calculate the rate constant, k, for a reaction at 65.0 °C that has an activation energy of 87.1 kJ/mol and a frequency factor of 8.62 × 1011 s–1.

Homework Answers

Answer #1

Step 1: Explanation:

Activation Energy can be calculated from the Arrhenius equation

k=Ae−Ea/RT

Where,

k = Rate constant, A = Frequency factor , Ea = Activation energy, R = Gas constant

T = Absolute Temperature

Step 2: Extract the data from question

k = we need to calculate   

A = 8.62 × 1011 s-1

Ea = 87.1 kJ/mol = 87100 kJ/mol

[ Note: 1 kJ = 1000 J =>  ( 87.1 kJ/mol   × 1000 J / 1 kJ ) = 87100 J/mol

R = 8.314 J / mol.K

T = 65°C = (65+273.15)K = 338.15 K

Step 3: Calculation of Rate constant

k=Ae−Ea/RT

By substituting the above value

=> k = 8.62 × 1011 s-1 × e-(87100 J/mol ) / (8.314 J/mol.K × 338.15 K)

=? k => 0.03024 s-1 ≈ 3× 10-2 s-1

hence, the rate constant for the reaction at 65 °C = 0.03024 s-1 ≈ 3× 10-2 s-1

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The activation energy of a reaction is 55.6 kJ/mol and the frequency factor is 1.5×1011/s. Calculate...
The activation energy of a reaction is 55.6 kJ/mol and the frequency factor is 1.5×1011/s. Calculate the rate constant of the reaction at 23 ∘C. Express your answer using two significant figures.
A certain reaction has an activation energy of 66.0 kJ/mol and a frequency factor of A1...
A certain reaction has an activation energy of 66.0 kJ/mol and a frequency factor of A1 = 8.30×1012 M−1s−1 . What is the rate constant, k, of this reaction at 27.0 ∘C ? An unknown reaction was observed, and the following data were collected: T (K) k (M−1⋅s−1) 352 109 426 185 Determine the activation energy for this reaction.
1.) The reaction C4H8(g)⟶2C2H4(g) has an activation energy of 262 kJ/mol. At 600.0 K the rate...
1.) The reaction C4H8(g)⟶2C2H4(g) has an activation energy of 262 kJ/mol. At 600.0 K the rate constant is 6.1×10−8 s−1. What is the value of the rate constant at 860.0 K? ?=_____ s−1 2.) A certain reaction has an activation energy of 47.01 kJ/mol. At what Kelvin temperature will the reaction proceed 7.50 times faster than it did at 357 K? ____ K 3.) Consider this reaction data. A⟶products T (K) k (s–1) 275 0.383 875 0.659 If you were...
A certain reaction has an activation energy of 64.0 kJ/mol and a frequency factor of A1...
A certain reaction has an activation energy of 64.0 kJ/mol and a frequency factor of A1 = 5.70×1012 M−1s−1 . What is the rate constant, k , of this reaction at 20.0 ∘C ? Express your answer with the appropriate units. Indicate the multiplication of units explicitly either with a multiplication dot (asterisk) or a dash. Part B An unknown reaction was observed, and the following data were collected: T (K ) k (M−1⋅s−1 ) 352 109 426 185 Determine...
A certain reaction has an activation energy of 60.0 kJ/mol and a frequency factor of A1...
A certain reaction has an activation energy of 60.0 kJ/mol and a frequency factor of A1 = 2.80×1012 M−1s−1 . What is the rate constant, k, of this reaction at 30.0 ∘C ? I tried k = Ae^(-Ea/RT) but it's giving me 1.26E2 M^-1s^-1 which is wrong on my online homework, I did convert C to K and kJ/mol to J.
A reaction has a rate constant of 0.393 at 291 K and 1.41 at 345 K....
A reaction has a rate constant of 0.393 at 291 K and 1.41 at 345 K. Calculate the activation energy of this reaction in kJ/mol.
Answer the following based on the reaction. At 313 K, the rate constant for this reaction...
Answer the following based on the reaction. At 313 K, the rate constant for this reaction is 1.09×102 /s and at 564 K the rate constant is 6.62×106 /s. cyclopentane → 1-pentene 1. Determine the activation energy (EA) (in kJ/mol) for this reaction. 2. Determine the pre-exponential factor, A (in /s) for this reaction. 3. Determine the rate constant (in /s) for this reaction at 1218 K.
the rate constant of a reaction is 4.0x10^-3 s^-1 at 25 degrees C, and the activation...
the rate constant of a reaction is 4.0x10^-3 s^-1 at 25 degrees C, and the activation energy is 33.6 kJ/mol. What is k at 75 degrees C? Enter in scientific notation
The rate constant of a reaction is 6.7 × 10−3 s−1 at 25°C, and the activation...
The rate constant of a reaction is 6.7 × 10−3 s−1 at 25°C, and the activation energy is 33.6 kJ/mol. What is k at 75°C? Enter your answer in scientific notation.
There are several factors that affect the rate of a reaction. These factors include temperature, activation...
There are several factors that affect the rate of a reaction. These factors include temperature, activation energy, steric factors (orientation), and also collision frequency, which changes with concentration and phase. All the factors that affect reaction rate can be summarized in an equation called the Arrhenius equation: k=Ae−Ea/RT where k is the rate constant, A is the frequency factor, Ea is the activation energy, R=8.314 J/(mol⋅K) is the universal gas constant, and T is the absolute temperature. __________________________________________________ A certain...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT