Question

The activation energy of a reaction is 55.6 kJ/mol and the frequency factor is 1.5×1011/s. Calculate...

The activation energy of a reaction is 55.6 kJ/mol and the frequency factor is 1.5×1011/s. Calculate the rate constant of the reaction at 23 ∘C. Express your answer using two significant figures.

Homework Answers

Answer #1

Given data:

Activation energy Ea = 55.6 kJ/mole = 55600 J/mole.

Frequency Factor A = 1.5 x 1011 s-1.

T = 23 oC = 23 + 273 = 296 K

Molar gas constant = R = 8.314 J.K-1.mole-1.

Rate constant (k) = ?

Arrhenius equation stated as

k=A*exp(-Ea/R*T)

On substituting all the known values,

k=A*exp(-Ea/R*T).

k= (1.5 x 1011) exp[-55600 / (8.314 x 296)].

k= (1.5 x 1011) exp[-22.59].

k= (1.5 x 1011) (1.54 x 10-10)

k= 23.1 s-1.

Is the rate constant for the reaction under given condition.

====================XXXXXXXXXXXXXXXX=======================

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A certain reaction has an activation energy of 64.0 kJ/mol and a frequency factor of A1...
A certain reaction has an activation energy of 64.0 kJ/mol and a frequency factor of A1 = 5.70×1012 M−1s−1 . What is the rate constant, k , of this reaction at 20.0 ∘C ? Express your answer with the appropriate units. Indicate the multiplication of units explicitly either with a multiplication dot (asterisk) or a dash. Part B An unknown reaction was observed, and the following data were collected: T (K ) k (M−1⋅s−1 ) 352 109 426 185 Determine...
1) A first order reaction has an activation energy of 66.6 kJ/mol and a frequency factor...
1) A first order reaction has an activation energy of 66.6 kJ/mol and a frequency factor (Arrhenius constant) of 8.78 x 1010 sec -1. Calculate the rate constant at 19 oC. Use 4 decimal places for your answer. 2) A first order reaction has a rate constant of 0.988 at 25 oC and 9.6 at 33 oC. Calculate the value of the activation energy in KILOJOULES (enter answer to one decimal place)
A certain reaction has an activation energy of 66.0 kJ/mol and a frequency factor of A1...
A certain reaction has an activation energy of 66.0 kJ/mol and a frequency factor of A1 = 8.30×1012 M−1s−1 . What is the rate constant, k, of this reaction at 27.0 ∘C ? An unknown reaction was observed, and the following data were collected: T (K) k (M−1⋅s−1) 352 109 426 185 Determine the activation energy for this reaction.
Calculate the rate constant, k, for a reaction at 65.0 °C that has an activation energy...
Calculate the rate constant, k, for a reaction at 65.0 °C that has an activation energy of 87.1 kJ/mol and a frequency factor of 8.62 × 1011 s–1.
Suppose that a catalyst lowers the activation barrier of a reaction from 122 kJ/mol to 57...
Suppose that a catalyst lowers the activation barrier of a reaction from 122 kJ/mol to 57 kJ/mol . By what factor would you expect the reaction rate to increase at 25 ∘C? (Assume that the frequency factors for the catalyzed and uncatalyzed reactions are identical.) Express your answer using two significant figures.
A certain reaction has an activation energy of 60.0 kJ/mol and a frequency factor of A1...
A certain reaction has an activation energy of 60.0 kJ/mol and a frequency factor of A1 = 2.80×1012 M−1s−1 . What is the rate constant, k, of this reaction at 30.0 ∘C ? I tried k = Ae^(-Ea/RT) but it's giving me 1.26E2 M^-1s^-1 which is wrong on my online homework, I did convert C to K and kJ/mol to J.
The activation energy for the decomposition of hydrogen peroxide is 55.0 kJ/mol. When the reaction is...
The activation energy for the decomposition of hydrogen peroxide is 55.0 kJ/mol. When the reaction is catalyzed by the enzyme catalase, it is 11.00 kJ/mol. 2H2O2(aq) → 2H2O(l) + O2(g) Calculate the temperature that would cause the nonenzymatic catalysis to proceed as rapidly as the enzyme-catalyzed decomposition at 20.0°C. Assume the frequency factor, A, to be the same in both cases. Report your answer to 3 significant figures.
Ethyl chloride vapor decomposes by the first-order reaction C2H5Cl→C2H4+HCl The activation energy is 249 kJ/mol and...
Ethyl chloride vapor decomposes by the first-order reaction C2H5Cl→C2H4+HCl The activation energy is 249 kJ/mol and the frequency factor is 1.6×1014s−1. Find the fraction of the ethyl chloride that decomposes in 19 minutes at this temperature. Express your answer using one significant figure.
The activation energy for a reaction is changed from 184 kJ/mol to 59.5 kJ/mol at 600....
The activation energy for a reaction is changed from 184 kJ/mol to 59.5 kJ/mol at 600. K by the introduction of a catalyst. If the uncatalyzed reaction takes about 2627 years to occur, about how long will the catalyzed reaction take? Assume the frequency factor A is constant and assume the initial concentrations are the same.
The frequency factor and activation energy for a chemical reaction are A = 8.08 x 10–12...
The frequency factor and activation energy for a chemical reaction are A = 8.08 x 10–12 cm3/(molecule·s) and Ea = 15.0 kJ/mol at 368.4 K, respectively. Determine the rate constant for this reaction at 368.4 K.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT