Question

A reaction has a rate constant of 0.393 at 291 K and 1.41 at 345 K....

A reaction has a rate constant of 0.393 at 291 K and 1.41 at 345 K. Calculate the activation energy of this reaction in kJ/mol.

Homework Answers

Answer #1

K1   = 0.393

T1   = 291K

K2   = 1.41

T2   = 345K

logK2/K1   = Ea/2.303R [1/T1-1/T2]

log1.41/0.393 = Ea/2.303*8.314 [1/291 -1/345]

0.5548           = Ea/19.147 (0.00343-0.00289)

0.5548*19.147    = Ea *0.00054

Ea                      = 0.5548*19.147/0.00054   = 19671.77J/mole   = 19.672KJ/mole >>>>>answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the rate constant, k, for a reaction at 65.0 °C that has an activation energy...
Calculate the rate constant, k, for a reaction at 65.0 °C that has an activation energy of 87.1 kJ/mol and a frequency factor of 8.62 × 1011 s–1.
Answer the following based on the reaction. At 313 K, the rate constant for this reaction...
Answer the following based on the reaction. At 313 K, the rate constant for this reaction is 1.09×102 /s and at 564 K the rate constant is 6.62×106 /s. cyclopentane → 1-pentene 1. Determine the activation energy (EA) (in kJ/mol) for this reaction. 2. Determine the pre-exponential factor, A (in /s) for this reaction. 3. Determine the rate constant (in /s) for this reaction at 1218 K.
Find the ratio between rate constant at 300 K and 320 k when the activation energy...
Find the ratio between rate constant at 300 K and 320 k when the activation energy of this reaction is 50 KJ/mol.
1.) The reaction C4H8(g)⟶2C2H4(g) has an activation energy of 262 kJ/mol. At 600.0 K the rate...
1.) The reaction C4H8(g)⟶2C2H4(g) has an activation energy of 262 kJ/mol. At 600.0 K the rate constant is 6.1×10−8 s−1. What is the value of the rate constant at 860.0 K? ?=_____ s−1 2.) A certain reaction has an activation energy of 47.01 kJ/mol. At what Kelvin temperature will the reaction proceed 7.50 times faster than it did at 357 K? ____ K 3.) Consider this reaction data. A⟶products T (K) k (s–1) 275 0.383 875 0.659 If you were...
the following reaction has an activation energy of 262 kJ/mol. C4H8(g)->2C2H4(g). At 600 K the rate...
the following reaction has an activation energy of 262 kJ/mol. C4H8(g)->2C2H4(g). At 600 K the rate constant is 6.1*10^-8s^-1. What is the value of the rate constant at 765.0 K?
If the rate constant k of a reaction doubles when the temperature increases from 121 °C...
If the rate constant k of a reaction doubles when the temperature increases from 121 °C to 279 °C, what is the activation energy of the reaction in units of kJ/mol? Do not enter units with your numerical answer. Do not use scientific notation.
Suppose a reaction has a rate constant of 0.720 1/h at 30.0 C. This reaction also...
Suppose a reaction has a rate constant of 0.720 1/h at 30.0 C. This reaction also has an activation energy of 50.0 kJ/mol. What is the rate constant of the reaction at 5.00 C (in 1/h)?
If a first order reaction has a rate constant of 4.15 X 10-2 s-1 at a...
If a first order reaction has a rate constant of 4.15 X 10-2 s-1 at a temperature of 24.5oC, what would the value of k be if the reaction temperature was changed to 52oC given that the activation energy is 67.8 kJ/mol?
The table below gives the values for the rate constant, k, of the reaction between potassium...
The table below gives the values for the rate constant, k, of the reaction between potassium hydroxide and bromoethane in ethanol at a series of temperatures. Use these data to determine the activation energy of the reaction. Explain your answer in brief. T/K 305.0 313.0 323.1 332.7 343.6 353.0 k/M-1 s-1 0.182 0.466 1.35 3.31 10.2 22.6 A 80J B 90J C 80 J mol-1 D 80 kJ mol-1 E 90 kJ mol-1
The activation energy, Ea for a particular reaction is 13.6 kj/mol. If the rate constant at...
The activation energy, Ea for a particular reaction is 13.6 kj/mol. If the rate constant at 754 degrees celsius is 24.5/min at egat temperature in celsius will the rate constant be 12.7/min? r= 8.314j/mol • K