Question

When pure sulfuric acid dissolves in water, much heat is given off. To measure it, 4.90...

When pure sulfuric acid dissolves in water, much heat is given off. To measure it, 4.90 g sulfuric acid is added to 175 g water, both at 10.0 ºC in coffee-cup calorimeter. The temperature of the mixture rose to 14.9 ºC. Assuming no heat loss and the density and the specific heat of the solution to be the same as that of water, calculate the heat evolved per mole of sulfuric acid.

Homework Answers

Answer #1

the heat of dissolution is essentially heat due to the acid dissolving in wate, typically, it will realease energy

so

-Qloss = Qgain

therefore

-Qdissolution = Qwater

Qwater = m*C*(Tf-Ti)

mass of water = 175 g

C = 4.184 J7gC

dT =14.9°C

Qwater = 175*4.184*(14.9) =10909.78 J

so

Qdissolution = -10909.78 J

mol of h2so4 used = mass/MW = 4.90/98 = 0.05 mol of H2SO4

so

Hsolution = Q/n = -10909.78 /0.05 = -218195.6 J/mol = -218.196 kJ/mol

negative, since it is exothermic process

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. When a solid dissolves in water, heat may be evolved or absorbed. The heat of...
1. When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 6.20 g of CsClO4(s) are dissolved in 115.60 g of water, the temperature of the solution drops from 22.87 to 19.50 °C. Based on the student's observation, calculate the enthalpy of dissolution of CsClO4(s) in kJ/mol. Assume the specific heat of the solution is...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 18.53 g of Cs2SO4(s) are dissolved in 100.40 g of water, the temperature of the solution drops from 25.54 to 22.92 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.85 J/°C....
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 4.13 g of CuCl2(s) are dissolved in 111.70 g of water, the temperature of the solution increases from 25.33 to 28.58 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.89 J/°C....
17. A common laboratory reaction is the neutralization of an acid with a base. When 50.0...
17. A common laboratory reaction is the neutralization of an acid with a base. When 50.0 mL of 0.500 M HCl at 25.0 °C is added to 50.00 mL of 0.500 M NaOH at 25.0 °C in a coffee cup calorimeter, the temperature of the mixture rises to 28.2 °C. What is the enthalpy of reaction per mole of acid? Assume the mixture has a specific heat capacity of 3.89 J/g·° C and a density of 1.09 g/mL while the...
When 10.0 mL of a 2.0 M acetic acid solution at 20.6ºC is reacted with 10.0...
When 10.0 mL of a 2.0 M acetic acid solution at 20.6ºC is reacted with 10.0 mL of a 2.1 M NaOH solution at 21.0ºC in a coffee cup calorimeter, the resulting temperature of the solution was determined to be 28.6ºC. Calculate the heat of reaction for this acid-base neutralization.   Assume the density and heat capacity of the solution to be the same as water. (d=1.00 g/mL and Cp=4.184J/gºC) The calorimeter constant was 2.7 J/ºC.
When a 4.00-g sample of solid ammonium nitrate dissolves in 60.0 g of water in a...
When a 4.00-g sample of solid ammonium nitrate dissolves in 60.0 g of water in a coffee-cup calorimeter (see figure below), the temperature drops from 23.0°C to 16.4°C. Calculate ΔH (in kJ/mol NH4NO3) for the solution process shown below. Assume that the specific heat of the solution is the same as that of pure water. Hint: this process occurs at constant pressure.
When 7.56 g of NaCl is added to a coffee cup calorimeter, the water temperature changes...
When 7.56 g of NaCl is added to a coffee cup calorimeter, the water temperature changes by 4.1 ºC. If the heat of solution (the enthalpy change upon dissolving in water) is 3.8 kJ/mol, what mass of solution must be in the cup? Assume the specific heat capacity of the solution is the same as the specific heat capacity of water.
Part A) A total of 2.00 mol of a compound is allowed to react with water...
Part A) A total of 2.00 mol of a compound is allowed to react with water in a foam coffee cup and the reaction produces 101 g of solution. The reaction caused the temperature of the solution to rise from 21.00 to 24.70 ∘C. What is the enthalpy of this reaction? Assume that no heat is lost to the surroundings or to the coffee cup itself and that the specific heat of the solution is the same as that of...
When a solid dissolves in water, the solution may become hotter or colder. The dissolution enthalpy...
When a solid dissolves in water, the solution may become hotter or colder. The dissolution enthalpy (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 10.13 g K2SO4(s) is dissolved in 114.80 g water, the temperature of the solution drops from 24.11 to 20.86 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.77 J/°C. Based on...
When a 5.93-g sample of solid sodium hydroxide dissolves in 39.8 g of water in a...
When a 5.93-g sample of solid sodium hydroxide dissolves in 39.8 g of water in a coffee-cup calorimeter (see above figure) the temperature rises from 22.00 oC to 56.12 oC. Calculate H in kJ/mol NaOH for the solution process. NaOH(s) Na+(aq) + OH-(aq) The specific heat of water is 4.18 J/g-K.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT