Question

Part A) A total of 2.00 mol of a compound is allowed to react with water...

Part A) A total of 2.00 mol of a compound is allowed to react with water in a foam coffee cup and the reaction produces 101 g of solution. The reaction caused the temperature of the solution to rise from 21.00 to 24.70 ∘C. What is the enthalpy of this reaction? Assume that no heat is lost to the surroundings or to the coffee cup itself and that the specific heat of the solution is the same as that of pure water. Enter your answer in kilojoules per mole of compound to three significant figures.

Part B)

A calorimeter contains 24.0 mL of water at 13.0 ∘C . When 1.60 g of X (a substance with a molar mass of 59.0 g/mol ) is added, it dissolves via the reaction

X(s)+H2O(l)→X(aq)

and the temperature of the solution increases to 26.5 ∘C .

Calculate the enthalpy change, ΔH, for this reaction per mole of X.

Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00 g/mL, and that no heat is lost to the calorimeter itself, nor to the surroundings.

Express the change in enthalpy in kilojoules per mole to three significant figures.

Part C)

Consider the reaction

C12H22O11(s)+12O2(g)→12CO2(g)+11H2O(l)

in which 10.0 g of sucrose, C12H22O11, was burned in a bomb calorimeter with a heat capacity of 7.50 kJ/∘C. The temperature increase inside the calorimeter was found to be 22.0 ∘C. Calculate the change in internal energy, ΔE, for this reaction per mole of sucrose.

Express the change in internal energy in kilojoules per mole to three significant figures.

Part D)

What is the enthalpy for reaction 1 reversed?

reaction 1 reversed: CO2→CO + 12O2

Express your answer numerically in kilojoules per mole.

Homework Answers

Answer #1

1) using formulae

Q= m * C * T

= 101 g * 4.18 J/g0C * (24.70C - 210C)

= 1562.066 J = 1.56 KJ

2)   

  Q= m * C * T mass of water = 24 g ( as density for water is equal to 1)

= 24g * 4.18 J/g0C * 26.50C -130C

= 1354.32 J = 1.35 KJ /mole

3) we calculate the number of moles of sucrose = given mass / molar mass

= 10 g /(342.3 g/mol) =  0.02921 moles of sucrose

As the heat capacity of the calorimeter is 7.50 kJ/ deg C .

(22.0 deg C)(7.50 kJ/deg C) = 165.0 kJ.. ( the temperature increase was 22.0 deg C when combusting the 0.02921 moles of sucrose )

the change in internal energy = (165.0 kJ) / (0.02921 moles of sucrose combusted) = 5648.75 kJ/mol=

564*10 kJ/mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Part A A calorimeter contains 21.0 mL of water at 11.0 ∘C . When 1.60 g...
Part A A calorimeter contains 21.0 mL of water at 11.0 ∘C . When 1.60 g of X (a substance with a molar mass of 72.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 26.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...
Part A A calorimeter contains 35.0 mL of water at 11.0 ∘C . When 1.30 g...
Part A A calorimeter contains 35.0 mL of water at 11.0 ∘C . When 1.30 g of X (a substance with a molar mass of 46.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 29.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...
A total of 2.00 mol of a compound is allowed to react with water in a...
A total of 2.00 mol of a compound is allowed to react with water in a foam coffee cup and the reaction produces 184 g of solution. The reaction caused the temperature of the solution to rise from 21.00 to 24.70 ∘C. What is the enthalpy of this reaction? Assume that no heat is lost to the surroundings or to the coffee cup itself and that the specific heat of the solution is the same as that of pure water....
A total of 2.00 mol of a compound is allowed to react with water in a...
A total of 2.00 mol of a compound is allowed to react with water in a foam coffee cup and the reaction produces 159g of solution. The reaction caused the temperature of the solution to rise from 21.00 to 24.70 ?C. What is the enthalpy of this reaction? Assume that no heat is lost to the surroundings or to the coffee cup itself and that the specific heat of the solution is the same as that of pure water. Enter...
A total of 2.00 mol of a compound is allowed to react with water in a...
A total of 2.00 mol of a compound is allowed to react with water in a foam coffee cup and the reaction produces 168 g of solution. The reaction caused the temperature of the solution to rise from 21.00 to 24.70 ∘C. What is the enthalpy of this reaction? Assume that no heat is lost to the surroundings or to the coffee cup itself and that the specific heat of the solution is the same as that of pure water....
Part A A calorimeter contains 25.0 mL of water at 11.5 ∘ C . When 1.20...
Part A A calorimeter contains 25.0 mL of water at 11.5 ∘ C . When 1.20 g of X (a substance with a molar mass of 73.0 g/mol ) is added, it dissolves via the reaction X(s)+ H 2 O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘ C . Calculate the enthalpy change, ΔH , for this reaction per mole of X . Assume that the specific heat of the resulting solution is equal to that of...
A total of 2.00 mol of a compound is allowed to react with water in a...
A total of 2.00 mol of a compound is allowed to react with water in a foam coffee cup and the reaction produces 128 g of solution. The reaction caused the temperature of the solution to rise from 21.00 to 24.70 ∘C. What is the enthalpy of this reaction? Assume that no heat is lost to the surroundings or to the coffee cup itself and that the specific heat of the solution is the same as that of pure water.
Part A: A calorimeter contains 32.0 mL of water at 12.5 ∘C . When 1.80 g...
Part A: A calorimeter contains 32.0 mL of water at 12.5 ∘C . When 1.80 g of X (a substance with a molar mass of 72.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 27.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...
Part A A calorimeter contains 35.0 mL of water at 12.5 ∘C . When 2.10 g...
Part A A calorimeter contains 35.0 mL of water at 12.5 ∘C . When 2.10 g of X (a substance with a molar mass of 79.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 28.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...
A calorimeter contains 30.0 mL of water at 11.5 ∘C . When 2.10 g of X...
A calorimeter contains 30.0 mL of water at 11.5 ∘C . When 2.10 g of X (a substance with a molar mass of 42.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...